
A Clairvoyant Approach to Evaluating Software (In)Security
Bhushan Jain

bhushan@cs.unc.edu
The University of North Carolina at

Chapel Hill

Chia-Che Tsai
chitsai@cs.stonybrook.edu
Stony Brook University

Donald E. Porter
porter@cs.unc.edu

The University of North Carolina at
Chapel Hill

ABSTRACT
Nearly all modern software has security flaws—either known or
unknown by the users. However, metrics for evaluating software
security (or lack thereof) are noisy at best. Common evaluation
methods include counting the past vulnerabilities of the program,
or comparing the size of the Trusted Computing Base (TCB), mea-
sured in lines of code (LoC) or binary size. Other than deleting
large swaths of code from project, it is difficult to assess whether a
code change decreased the likelihood of a future security vulnera-
bility. Developers need a practical, constructive way of evaluating
security.

This position paper argues that we actually have all the tools
needed to design a better, empirical method of security evaluation.
We discuss related work that estimates the severity and vulnerabil-
ity of certain attack vectors based on code properties that can be
determined via static analysis. This paper proposes a grand, unified
model that can predict the risk and severity of vulnerabilities in a
program. Our prediction model uses machine learning to correlate
these code features of open-source applications with the history of
vulnerabilities reported in the CVE (Common Vulnerabilities and
Exposures) database. Based on this model, one can incorporate an
analysis into the standard development cycle that predicts whether
the code is becoming more or less prone to vulnerabilities.

ACM Reference format:
Bhushan Jain, Chia-Che Tsai, and Donald E. Porter. 2017. A Clairvoyant
Approach to Evaluating Software (In)Security. In Proceedings of Workshop
on Hot Topics in Operating Systems, British Columbia, Canada, May 2017
(HotOS’17), 7 pages.
https://doi.org/10.475/123_4

“If you can not measure it, you can not improve it.”
—Lord Kelvin (Sir William Thomson)

1 INTRODUCTION
Evaluating software security is hard. When a developer makes a
change to her codebase, she needs a way to validate that the change
improves overall security, or at least is unlikely to have opened up
new vulnerabilities. Although formal methods to prove systems
correct are making great strides [39, 44, 63], it will be some time, if
ever, before most software is verified.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotOS’17, May 2017, British Columbia, Canada
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

0 100 200 300 400

Papers formally verified or proved

Papers using # of CVE reports

Papers using Lines of Code
CCS

PLDI

SOSP

ASPLOS

Eurosys

Figure 1: Numbers of papers, in top system proceedings, us-
ing lines of code, numbers of past CVE reports, orwhether or
not the work is formally verified or mathematically proved,
to evaluate security or indicate insecurity.

In the meantime, developers are stuck with several unappealing
options. First, developers can hope for the best, and fix vulnerabili-
ties reactively (i.e., after systems have been compromised). Second,
developers can use a number of bug finding or code quality as-
sessment tools [9, 11, 16, 17, 25, 26, 28, 31, 34, 40, 50, 54, 67]; clearing
all warnings from these tools will certainly improve code quality,
but not all code quality issues pose equal security risks. Finally,
developers can use noisy metrics, like total lines of code, which
have certain “local maxima” (e.g., delete everything), and do not
improve both functionality and security.

In the research community, system researchers primarily use
noisy metrics, such as lines of code, to evaluate relative security of
software products or prototypes. We surveyed the papers published
in several top systems conferences, including CCS, PLDI, SOSP,
ASPLOS, and Eurosys, and found 384 papers using lines of code to
evaluate the security of their solutions, or to indicate the insecurity
of alternatives, as shown in Figure 1. 116 papers in our survey use
reports from the CVE (Common Vulnerabilities and Exposures)
databases [5], to analyze software vulnerability. Only 31 papers
have formally verified or mathematically proved the security of
their solutions. Thus, the de facto metric for security in systems
research is counting lines of code.

This paper argues that the computer science community now
has all of the right tools needed to design a better, empirical security
evaluation. Even if one can’t prove the absence of vulnerabilities,
it is possible to estimate the level of security (or insecurity) in a
program, by approximating the likelihood of having vulnerabili-
ties. A large body of security research has shown various corre-
lations between the occurrence of certain types of vulnerabilities
and code properties such as the choice of programing languages,
code complexity, and length of the program. [18,21,25,28,31,33,53].
Collectively, these code properties represent a fairly wide range
of noisy, but meaningful signals; we argue that distilling a more

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


HotOS’17, May 2017, British Columbia, Canada Bhushan Jain, Chia-Che Tsai, and Donald E. Porter

precise prediction from this data is precisely what machine learning
is good at.

In order to make this approximation precise, We propose to use
machine learning techniques to identify correlations between the
code properties and the vulnerabilities reported in the CVE data-
base. In our prediction model, the severity and classification of
vulnerabilities from the CVE database is a vast ground truth data,
which can help the machine learning engine correlating the occur-
rence of vulnerabilities and various program properties. Using this
model, we select open-source applications from the CVE database
that have a converging history of vulnerability reporting. Based on
the CVE tuples of each applications, we can learn the correlation
between code properties and the existence of vulnerabilities, with
cross validation within the ground truth.

For such a metric to succeed, it must be reasonably predictive,
and encourage improvement over previous versions of the code, or
in selecting among competing options. For instance, in selecting
between two library implementations for use in a web service,
our proposed metric would identify which is less likely to have
vulnerabilities. Since the prediction model is trained offline, and
the analysis of program properties can be mostly automated, the
security evaluation requires very little effort from the developers.

2 BETWEEN A ROCK AND A HARD PLACE
Although we are perhaps within striking distance of the strong
assurances of formal methods, it will be some time before most
code is proved correct. In the mean time, the state of the art amounts
to testing. This section motivates the need for a metric that can
capture the level of risk in imperfect software.

2.1 Formal Verification
One approach to ensure correct behavior of a program is formal
verification. Formal verification generally proves that an implemen-
tation satisfies a model, or specification, of the program’s expected
behavior. Assuming the specification is written to preclude insecure
behavior (for some definition of secure), a formally-verified code-
base will also be secure. There are two main approaches: developers
either write a mathematical proof of the program specifications
(deductive model) [20, 36, 42, 43, 51], or to specify a finite state ma-
chine model of program execution for exhaustive checking (model
checking) [19, 24, 32, 35, 50].

Formal verification is a “holy grail” for developers; as E.W. Dijk-
stra pithily observed, “program testing can be used very effectively
to show the presence of bugs but never to show their absence” [7].
Using formal verification, a developer can actually prove the ab-
sence of bugs in her program. However, there are two practical
obstacles for verification. The simple problem is that the tools are
relatively nascent, and only a few researchers have the expertise
to use them [30]. Moreover, several systems papers on verification
propose enhancements to the tools or proof techniques themselves
to make the proof go through [38, 44, 57, 62]. A deeper challenge
is that designing a comprehensive specification that precludes all
attack vectors is challenging and requires a different set of skills
than writing an implementation. Writing a specification is essential
however, as it is questionable the degree to which one can reason

about system security without some implicit notion of correct be-
havior; crisply articulating what is “correct” is generally reported
to be a useful exercise.

2.2 Testing
Penetration testing is an empirical alternative to formal verification.
The developers can recruit a team of expert attackers that test
likely attack vectors. Like any other testing strategies, bugs may be
overlooked, and the quality of the test depends heavily on the skill
of the testers. One of the successful example of this type of security
evaluation is the annual hacking contest Pwn2Own [14]. However,
the cost of “bug bounties” can be high. For example, Google offered
$1 million to hackers who can produce zero-day exploits against its
Chrome browser [13]. Furthermore, auditors can do a code review
to check for any vulnerabilities, but is a labor-intensive process.
Auditing ensures that proper security standards are met, which
should reduce the existence of vulnerabilities in the code. The goal
of the penetration testing is to find vulnerabilities, while the goal
of the auditor is to ensure safe practices are followed to prevent
vulnerabilities.

In order to evaluate the security improvement in the newer
versions of the program, the developers often test that the vulner-
abilities reported on the older versions of a program are fixed in
the newer version. This is a natural extension to regression testing
in a continuous integration (CI) workflow, and easy for developers
to adopt. Like other testing approaches, this approach is only as
comprehensive as the unit tests.

3 NO SINGLE METRIC IS COMPREHENSIVE
A number of approaches use code properties as a way to estimate
the likelihood of having vulnerabilities in a program. The code
properties that are commonly used by software or research projects
include LoC, binary size, and number of interfaces. Researchers have
also developed software engineering techniques to approximate
the complexity of a program, such as using McCabe’s cyclomatic
complexity metric [47] or Halstead complexity measures [37]. In
addition, there is a long line of research using code properties
to indicate “code smell” [45, 46, 49, 55, 58, 64, 65, 68]—symptoms
or patterns of bad coding practice, such as lines of comments or
numbers of long methods. The underlying assumption is that the
number of vulnerabilities is generally correlated with these code
properties.

3.1 Lines of Code is a Bad Metric
The conventional wisdom is that the number of bugs is correlated
with LoC or binary size. As a result, LoC or binary size is frequently
used in system research to evaluate software prototypes. And there
is both intuitive and anecdotal appeal for this notion. However, not
all bugs are vulnerabilities. A prior study [23] on the Chromium
project [2] shows that bug estimates are not direct estimates of
vulnerabilities. A bug may not change the state of the program
in a way that violates security-related invariants, or may not be
triggered by interfaces exposed to external attackers.

To test whether this conventional wisdom applies to vulnera-
bilities, we surveyed 164 open source applications from the CVE
database, all of which have at least 5 years of CVE history (i.e., the



A Clairvoyant Approach to Evaluating Software (In)Security HotOS’17, May 2017, British Columbia, Canada

1

10

100

1000

1 10 100 1,000 10,000

#
 o

f 
V

u
n

er
a
b

il
it

ie
s

Thousand Lines of Code (ANY languages)

Primarily C Primarily C++ Primarily Python Primarily Java

Log10(#vuln)

= 0.17 + 0.39 Log10(kLoC)

R2 = 24.66%

Figure 2: Lines of code plotted against number of vulnerabil-
ities for open-source applicationswithmore than 5-year his-
tory in the CVE database. The applications are categorized
by the primary programming languages used (either C, C++,
Java, or Python).

time of the newest CVE report minus the time of the oldest CVE
report). We calculated the lines of code using cloc [29]. We catego-
rized the applications by the languages in which they are primarily
programmed: 126 are primarily in C, 20 are primarily in C++, 6 are
primarily in Python, and 12 are primarily in Java. Figure 2 shows
the correlation between the number of vulnerabilities (regardless
of the severity) and the total LoC in applications.

We observe that programs with large numbers of vulnerabilities
tend to have large code bases. However, there is only a weak corre-
lation between LoC and the number of vulnerabilities. Only when
one buckets application sizes and vulnerability counts by orders of
magnitude is there a weak correlation. Specifically, the coefficient
of determination (i.e., R2) is 24.66%—meaning 75.34% of the data
set cannot be explained by the trend line, even when bucketed by
order of magnitude. Thus, this data does not support the notion that
simply comparing lines of code within the same order of magnitude
is a meaningful indicator of security.

People often argue that some languages are inherently more se-
cure. Although some common bug patterns, such as pointer errors,
are precluded by higher-level languages, this evidence does not
support that Python is any less prone to errors than C or C++. In
this data set, the sample size for Java is admittedly small (only 12
projects), but the Java projects do have a lower number of vulnera-
bilities. For other languages, no significant trend can be observed
from the study.

The study shows a lesson: using LoC for security evaluation is
not statistically significant if the difference is within one or two
orders of magnitude. LoC is too noisy to make any high-quality
predictions, and can lead to naive or facile conclusions. The security
of a program is under the influence of a number of factors, such
as expertise of the programmers, code maturity, and level of code
review.

3.2 Other Metrics Are Also Noisy
Similar to lines of code, other code properties, such as McCabe’s
cyclomatic complexity metric [47], are also noisy indicators of
security problems. The cyclomatic complexity is measured as the

1

10

100

1000

100 1,000 10,000 100,000 1,000,000

#
 o

f 
V

u
n

er
a
b

il
it

ie
s

Cyclomatic Complexity

Primarily C Primarily C++ Primarily Python Primarily Java

Figure 3: Cyclomatic complexity metric [47] plotted against
number of vulnerabilities.

number of linearly independent paths through a program’s source
code. This complexity increases with the number of conditional
statements, and their nesting. Similar to LoC, cyclomatic complexity
is also weakly correlated to the number of vulnerabilities reported
in CVE database, as we demonstrate in Figure 3.

Apart from measuring code properties, other models have been
proposed to measure software security. Some of the standards re-
garding security design metrics are NIST 800-55 [52], Common
Criteria [54], and ISO/IEC 27004 [8]. However, as Wang explains,
“these specifications are either too broad without precise definitions
or too specific to cover all the security situations” [66]. Most of the
standards are qualitative, subjective, and defined without a formal
model, specifying different levels of trust, and different interpre-
tation of these levels. Alshammari et al. [16] designed security
metrics for object-oriented programs to measure accessibility of
objects, using information flow tracking to observe interactions
among classes. However, this metric is limited to object-oriented
designs that only limits the interactions among different objects
and classes.

In addition to design standards, some individual aspects of a
program are also used to measure software security. Howard et
al. [41] calculate the attackability of a system as Relative Attack
Surface Quotient (RASQ) by measuring attack surface in terms of
the resources available to the attacker, the communication chan-
nels, and access rights. As the authors state, these measure some
dimensions of attack surface, and are not necessarily all, or even
the right, dimensions. Their score is only relative to another system,
and limited by the specific system configuration. Nicol et al. [50]
evaluate system security from model-based techniques for eval-
uating system dependability. While dependability can be one of
the factors affecting security of a software, it is not the only factor
governing security of a software. Wang et al. [67] combine the Com-
mon Vulnerability Scoring System (CVSS) score of all the known
CVE reports of a software, to assign a final security metric score.
While, this metric can be a good way to compare the security of two
pieces of software, this technique does not consider unknown vul-
nerabilities, nor is their score dependent on any other information
than the CVSS score.



HotOS’17, May 2017, British Columbia, Canada Bhushan Jain, Chia-Che Tsai, and Donald E. Porter

Mellado et al. [48] compare software design security metrics
based on different characteristics including authenticity, confiden-
tiality, detection of attacks, and commercial damage. They explain
in detail the shortcomings of these security metrics. They observe
that the most comprehensive metric that covers all the characteris-
tics is CVSS score. While there exists a few standards and metrics
for security evaluation, all of them are either too difficult to use ob-
jectively, too specific, or focus on only one specific security relevant
attribute of the program.

4 MAYBE MORE METRICS?
Metrics like lines of code, cyclomatic complexity, and other code
properties are noisy indicators and only measure specific aspects of
a program. Most of these properties have indicated the likelihood
of certain types of bugs. However, because we treat vulnerabilities
as a type of bugs, some of these code properties may also correlate
with vulnerabilities, albeit by a different formula. Our position is
that a weighted aggregation of multiple metrics can provide a more
precise estimation of potential vulnerabilities.

One prior project [61] has shown the predictability of multiple
code properties for software vulnerability, in a limited scope. Shin et
al. evaluate complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities in Mozilla Firefox web
browser and the Red Hat Enterprise Linux kernel. They are able to
predict 80% of the vulnerable files, by taking into account most basic
properties of code files such as LoC, number of functions, number
of declarations, lines of preprocessed code, number of branches,
and number of input and output arguments to a function. Even
though this study only predicts vulnerable files to be inspected,
it shows that these attributes are correlated with the existence of
vulnerabilities.

We propose expanding the study of Shin et al. to a wider range of
software and code properties. Learning a prediction function from a
larger feature vector that indicates the potential for vulnerabilities
can only improve the prediction accuracy. Our goal is to yield a
useful security metric that can predict the number, classification,
and severity of vulnerabilities, rather than just files to be inspected.

4.1 Finding More Code Properties
We can draw additional code metrics from the security literature.
For example, to measure the attack surface of a program, one can
use Relative Attack Surface Quotient (RASQ) [41]. We can also
evaluate how difficult it is to either launch a specific type of attack
on a program, or defend against the attack. However, in reality,
all the attackers need to penetrate a program is one high-impact
vulnerability that subverts the security of the program. Therefore,
we can estimate how difficult it is to attack a program by building
an attack-graph [60].

We can collect additional metrics from static analysis that are
likely relevant. For instance, data flow analysis [56] can determine
numbers of expressions or functions influencing the execution of
other parts of the code. Control flow analysis [15] can determine
numbers of calling and returning targets in a program. Moreover,
using symbolic execution [22] or abstract interpretation [27], we
can calculate the number of different execution paths in a program
that can be triggered by specific ranges of inputs.

4.2 Leveraging Bug-finding Tools
We can also extract information from existing bug-finding tools. In
general, the concern with many bug-finding tools is a high false
positive rate; it is unclear whether a machine learning tool will
be sufficient to separate the wheat from the chaff without human
intervention. A simple way is to feed the bug reports or count of
bug types into the machine learning engine. Although finding bugs
is a different goal from security evaluation, using the results of
bug-finding tools as code properties can amortize the inaccuracy
of locating bugs, and potentially lead to the discovery of hidden
correlation with other types of vulnerabilities.

A number of research projects have developed bug or defect
finding techniques, which analyze the source code or the binary to
find known code properties patterns or apply amodel. Some of these
tools are language-specific. Java specific tools such as PMD [11],
FindBugs [40], and JLint [9] use syntactic bug pattern detection,
while ESC/Java [34] uses theorem proving, and Bandera [26] uses
model checking. Lint [17] is a C program checker that finds program
constructions that can lead to future errors. Rutar et al. [59] compare
bug finding tools for JAVA, and design a meta-tool that combines
the output of all other tools.

Some researchers use program specifications and models to find
bugs. Dolby et al. [31], choose to encode a program as a relational
logic, and then use a constraint solver to find specification viola-
tions. Couto et al. [28], study the causal relationships between qual-
ity metrics and bugs. Chen et al. [25] identify safe programming
practices, encode them as safety properties, and verify whether
these properties are obeyed by the programs. We can use these
bug-finding tools as independent inputs to the machine learning
block.

5 EXTRACTING MORE SIGNAL FROMMORE
NOISE

In this section we propose a system design to create and apply our
proposed security metric in future work. Given a codebase, the
metric will predict the occurrence of vulnerabilities by severity and
classification. The steps for building the system include construct-
ing a testbed for data collection, using machine learning to train
the prediction model, and then letting developers apply the metric
to evaluate their code.

5.1 The Testbed
To train a stable model for prediction, we need a representative
dataset of software vulnerabilities. We propose to collect the past
vulnerabilities from the CVE (Common Vulnerabilities and Expo-
sures) database [5]. The CVE database reports more than 80,000
vulnerabilities in ∼400 applications and systems. CVE exports a
data set that is ready for analysis; for each vulnerability, its clas-
sification, impact, and severity is represented by a metric called
Common Vulnerability Scoring System (CVSS) (the current version
is v3.0) [3]. The CVSS scores are based on a lot of different factors
including attack vector (AV), attack complexity (AC), privileges
required (PR), confidentiality impact (C), integrity impact (I), and
exploit code maturity (E).

In the CVE database, some applications have been maintained
and debugged for decades, whereas other applications are relatively



A Clairvoyant Approach to Evaluating Software (In)Security HotOS’17, May 2017, British Columbia, Canada

CVE Database

Select applications with

converging history

App 1

App 2

App 3

App N

…

CVSS>7?  AV=N?  CWE=121?  …

Testbed

S
ta

ti
c 

A
n

a
ly

si
s 

T
o
o

ls

Languages  LoC  Cyclomatic #func #var …

CVE hypotheses:Code properties:

… …

W1 W2 W3 W4 W5 …

Machine learning tool (e.g., Weka) with cross validation

Features Classes

Trained model (Weights)

Figure 4: The training phase of our security evaluation
model.

immature. Our study will focus on open-source applications which
have at least a 5-year history in the CVE database—the same set
of applications shown in Figure 2 and 3. Because of the number
of features (i.e., code properties) used in the training, we want a
sufficiently large quantity of application samples and attributes that
the generated model does not overfit. We currently use a training
data set of 5,975 vulnerabilities reported for the 164 selected appli-
cations, collected as of April 2017. It is unclear how many samples
will be enough, although this set will grow over time.

We also need an automated framework to collect all the code
properties from the sample applications. Several tools are automat-
able and are extensible collecting additional code information. For
example, CCCC [1] and Metrix++ [10] analyze C/C++ and/or Java
code and generate the distribution of both LoC and the cyclomatic
complexity metric. Metrix++ is extensible to collect other code
properties by specifying regular expressions to search.

5.2 Training the Model
Once we have determined the code properties of our sample ap-
plications, we can use these code properties as inputs to train our
model of predicting vulnerabilities. The classes to predict include
the classifications from the CVE database, such as the weakness
types defined by Common Weakness Enumeration (CWE) [4], and
CVSS factors, including attack vector (AV), attack complexity (AC),
privileges required (PR), impact on confidentiality, integrity or avail-
ability (C/I/A), and the aggregated CVSS score.

Our approach is similar to the prior work which uses machine
learning to overcome the common weakness of the bug-finding
tools—too many false positives. For instance, Brun et al. [21] gener-
ate the models of fault-revealing program properties, and apply to
user-written code to predict whether the code contains errors. Sim-
ilarly, Zeng [69] devised a machine learning approach to combine
three different bug finding tools in Java.

We use machine learning to train a series of hypotheses on
the sample applications: For example, how many high-severity
vulnerabilities exist in an application (i.e., CVSS > 7)? Does an
application contain any vulnerabilities that are accessible from the

network (i.e., Attack Vectors = N)? Does an application suffer any
stack-based buffer overflow (i.e., CWE = 121 [6])? The data set that
we use for training maps the answers of these hypotheses on our
sample applications, to a large quantity of code properties collected
by our testbed. Using the data set as a ground truth, we can train a
model that predicts the results of these hypotheses on an unknown
applications. Figure 4 shows a high-level overview of the training
phase of our security evaluation model.

A data mining tool, such as Weka [12], can then train the weights
that correlate code properties to these hypotheses. The primary
challenge on building this metric will be to refine the trained model,
including filtering features that are irrelevant to the prediction, de-
termining necessary data transformation for numeric features, and
tuning the parameters to the learning algorithms. Using the trained
model, we can present a prediction of unknown vulnerabilities,
which can empirically compare two programs, and is generated
based on a vector of code properties.

5.3 Using the Metric
The outcome of the training phase is a classifier, which predicts
the number, severity, classification, and impact of vulnerabilities,
for any application. We envision software developers applying this
classifier to their source code. The automated testbed can be used for
collecting code properties in developer’s codebase. Based on these
code properties, the classifier can give the developer an evaluation
of, say, whether a code change has raised or lowered the risk than
the previous version of the code.

Each weight in the trained model shows the importance of the
corresponding code property to the predicted vulnerability. For
instance, the classifier can predict the expected risk of an attack via
the network. Properties that heavily contribute to a given result
can be flagged for developer attention. Developers can use these
hints to prioritize the improvement of code properties or choosing
a defense mechanism, such as applying bound checking if there
is high risk of buffer overflow, or placing the application behind
firewall or intrusion protection if a network attack is predicted.

One potential improvement is to collect dynamic traces; dynamic
properties of a program may further yield additional insights or
accuracy. For ease of deployment and integration with current
development tools, we focus on static analysis.

An important question for future work is: can we use the same
approach of evaluating application programs to evaluate whole
systems? We expect that total system security is dependent upon
the weakest link, although factors such as which applications are
network-facing have a role as well. Similarly, it is challenging to
model areas of containment, such as when a hardware protection
boundary (i.e., a “ring” in x86) is crossed, or when services are
distributed acrossmultiple, unprivileged users, as in Android. A goal
for future work is to apply the metric in to a VM or Docker image,
capturing the risk for not just the application, but its supporting
infrastructure.

6 CONCLUSION
Developers lack good tools for evaluating whether a code change
is likely to improve or reduce the probability of an exploitable
vulnerability. Most testing and code quality tools are best-effort.



HotOS’17, May 2017, British Columbia, Canada Bhushan Jain, Chia-Che Tsai, and Donald E. Porter

Formal approaches are beginning to come to maturity, but still
require a high degree of sophistication. We present a new approach
to security evaluation that is easy for the average developer to
employ. This work represents a step towards a more quantitatively-
driven approach to measuring risk in software engineering. In the
absence of perfect code, code can only become more reliable if we
can estimate imperfection.

In future work, we will flesh out the model and analyze against a
corpus of programs, as well as seek to validate that the approach im-
proves security. An ongoing challenge for the work is to extend the
limited data sets; although CVE data makes this work possible, the
data collected is limited to programs that have been used or studied
sufficiently well to warrant CVE reporting. Another challenge is
translating the metric to actionable code changes; we expect that
one might be able to identify individual code metrics that contribute
to this risk and work from there. Alternatively, one might use these
metrics to focus the effort of bug-finding tools for deeper analysis
on particularly risky code, or to focus additional testing effort.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
on the work. This work was supported in part by NSF grants
CNS-1405641, CNS-1161541, and VMware.

REFERENCES
[1] CCCC - C and C++ code counter. http://cccc.sourceforge.net/.
[2] Chromium - the chromium projects. https://www.chromium.org/Home.
[3] Common vulnerability scoring system v3.0: Specification document. https://www.

first.org/cvss/specification-document.
[4] Common weakness enumeration (CWE). https://cwe.mitre.org/data/index.html.
[5] CVE - common vulnerabilities and exposures. https://cve.mitre.org/.
[6] CWE-121: Stack-based buffer overflow. https://cwe.mitre.org/data/definitions/

121.html.
[7] E.W. Dijkstra archive: On the reliability of programs. https://www.cs.utexas.edu/

users/EWD/transcriptions/EWD03xx/EWD303.html.
[8] ISO/IEC 27004:2016: Monitoring, measurement, analysis and evaluation. http:

//www.iso27001security.com/html/27004.html.
[9] JLint. Online at http://artho.com/jlint/.
[10] Metrix++ project. metrixplusplus.sourceforge.net/.
[11] PMD. Online at https://pmd.github.io/.
[12] Weka 3: Data mining software in java. http://www.cs.waikato.ac.nz/ml/weka/.
[13] Chrome owned by exploits in hacker contests, but google’s $1m purse still safe |

wired. March 2012.
[14] Pwn2Own 2016: Windows, OS X, Chrome, Edge, Safari all hacked - gHacks tech

news. March 2016. (Accessed on 04/25/2017).
[15] F. E. Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19.

ACM, 1970.
[16] B. Alshammari, C. Fidge, and D. Corney. Security metrics for object-oriented

class designs. In Quality Software, 2009. QSIC’09. 9th International Conference on,
pages 11–20. IEEE, 2009.

[17] F. ans Kunst. Lint, a c program checker. 1988.
[18] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. Using static

analysis to find bugs. IEEE software, 25(5):22–29, 2008.
[19] R. Barbuti, C. Bernardeschi, and N. De Francesco. Checking security of java

bytecode by abstract interpretation. In Proceedings of the 2002 ACM Symposium
on Applied Computing, SAC ’02, 2002.

[20] Y. Bertot, G. Huet, P. Castéran, and C. Paulin-Mohring. Interactive Theorem Proving
and Program Development: Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. An EATCS Series. Springer Berlin Heidelberg,
2013.

[21] Y. Brun and M. D. Ernst. Finding latent code errors via machine learning over
program executions. In Proceedings of the 26th International Conference on Software
Engineering, pages 480–490. IEEE Computer Society, 2004.

[22] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, volume 8, pages
209–224, 2008.

[23] F. Camilo, A. Meneely, and M. Nagappan. Do bugs foreshadow vulnerabilities?
a study of the chromium project. In Mining Software Repositories (MSR), 2015
IEEE/ACM 12th Working Conference on, pages 269–279. IEEE, 2015.

[24] H. Chen, D. Dean, and D. Wagner. Model checking one million lines of c code. In
NDSS, volume 4, pages 171–185, 2004.

[25] H. Chen and D.Wagner. Mops: an infrastructure for examining security properties
of software. In CCS, pages 235–244. ACM, 2002.

[26] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, H. Zheng,
et al. Bandera: Extracting finite-state models from java source code. In Software
Engineering, 2000. Proceedings of the 2000 International Conference on, pages 439–
448. IEEE, 2000.

[27] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238–252. ACM, 1977.

[28] C. Couto, P. Pires, M. T. Valente, R. Bigonha, A. Hora, and N. Anquetil. Bugmaps-
granger: A tool for causality analysis between source code metrics and bugs. In
Brazilian Conference on Software: Theory and Practice (CBSoft’13), 2013.

[29] A. Danial. cloc. https://github.com/AlDanial/cloc.
[30] D. Dean, S. Gaurino, L. Eusebi, A. Keplinger, T. Pavlik, R. Watro, A. Cammarata,

J. Murray, K. McLaughlin, J. Cheng, et al. Lessons learned in game development
for crowdsourced software formal verification. 2015 USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE 15), 2015.

[31] J. Dolby, M. Vaziri, and F. Tip. Finding bugs efficiently with a sat solver. In
Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 195–204. ACM, 2007.

[32] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for
finite-state verification. In Proceedings of the second workshop on Formal methods
in software practice, pages 7–15. ACM, 1998.

[33] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code. In ACM SIGOPS Operating
Systems Review, volume 35, pages 57–72. ACM, 2001.

[34] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. SIGPLAN Not., 37(5):234–245, May 2002.

[35] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Protocol Specification, Testing and Verification
XV, pages 3–18. Springer, 1996.

[36] M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving envi-
ronment for higher order logic. Cambridge University Press, 1993.

[37] M. H. Halstead. Elements of software science, volume 7. Elsevier New York, 1977.
[38] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. Setty,

and B. Zill. Ironfleet: proving practical distributed systems correct. In Proceedings
of the 25th Symposium on Operating Systems Principles, pages 1–17. ACM, 2015.

[39] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, and B. Zill.
Ironclad apps: End-to-end security via automated full-system verification. In
OSDI, pages 165–181, 2014.

[40] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM Sigplan Notices, 39(12):92–
106, 2004.

[41] M. Howard, J. Pincus, and J. M. Wing. Measuring relative attack surfaces. In
Computer Security in the 21st Century, pages 109–137. Springer, 2005.

[42] P. B. Jackson, B. J. Ellis, and K. Sharp. Using smt solvers to verify high-integrity
programs. In Proceedings of the second workshop on Automated formal methods,
pages 60–68. ACM, 2007.

[43] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-aided reasoning: ACL2 case
studies, volume 4. Springer Science & Business Media, 2013.

[44] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In SOSP, 2009.

[45] C. Marinescu, R. Marinescu, P. F. Mihancea, and R. Wettel. iplasma: An integrated
platform for quality assessment of object-oriented design. In In ICSM (Industrial
and Tool Volume, pages 77–80. Society Press, 2005.

[46] R. Marinescu and D. Ratiu. Quantifying the quality of object-oriented design: The
factor-strategy model. In Proceedings of the 11th Working Conference on Reverse
Engineering, WCRE ’04, 2004.

[47] T. J. McCabe. A complexity measure. IEEE Transactions on software Engineering,
(4):308–320, 1976.

[48] D. Mellado, E. Fernández-Medina, and M. Piattini. A comparison of software
design security metrics. In Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, pages 236–242. ACM, 2010.

[49] N. Moha and Y.-G. Guéhéneuc. Decor: A tool for the detection of design defects. In
Proceedings of the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering, ASE ’07, 2007.

[50] D. M. Nicol, W. H. Sanders, and K. S. Trivedi. Model-based evaluation: from
dependability to security. IEEE Transactions on dependable and secure computing,
1(1):48–65, 2004.

[51] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[52] Nist and E. Aroms. NIST Special Publication 800-55 Rev1 Security Metrics Guide
for Information Technology Systems. CreateSpace, Paramount, CA, 2012.

http://cccc.sourceforge.net/
https://www.chromium.org/Home
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://cwe.mitre.org/data/index.html
https://cve.mitre.org/
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
http://www.iso27001security.com/html/27004.html
http://www.iso27001security.com/html/27004.html
http://artho.com/jlint/
metrixplusplus.sourceforge.net/
https://pmd.github.io/
http://www.cs.waikato.ac.nz/ml/weka/
https://github.com/AlDanial/cloc


A Clairvoyant Approach to Evaluating Software (In)Security HotOS’17, May 2017, British Columbia, Canada

[53] K. Pan, S. Kim, and E. J. Whitehead Jr. Bug classification using program slicing
metrics. In IEEE International Workshop on Source Code Analysis and Manipulation,
pages 31–42. IEEE, 2006.

[54] S. C. P. Profile. Common criteria for information technology security evaluation.
2001.

[55] G. Rasool and Z. Arshad. A review of code smell mining techniques. J. Softw. Evol.
Process, 27(11):867–895, Nov. 2015.

[56] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’95, pages 49–61, New York, NY,
USA, 1995. ACM.

[57] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and P. Sewell.
Sibylfs: formal specification and oracle-based testing for posix and real-world file
systems. In Proceedings of the 25th Symposium on Operating Systems Principles,
pages 38–53. ACM, 2015.

[58] N. Roperia. JSmell: A Bad Smell detection tool for Java systems. California State
University, Long Beach, 2009.

[59] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug finding tools
for java. In Software Reliability Engineering, 2004. ISSRE 2004. 15th International
Symposium on, pages 245–256. IEEE, 2004.

[60] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation
and analysis of attack graphs. In Security and privacy, 2002. Proceedings. 2002 IEEE
Symposium on, pages 273–284. IEEE, 2002.

[61] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities.
IEEE Transactions on Software Engineering, 37(6):772–787, 2011.

[62] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button verification
of file systems via crash refinement. In OSDI, 2016.

[63] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Verifying confidentiality of
enclave programs. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1169–1184. ACM, 2015.

[64] S. Slinger, D. Ing, L. M. F. Moonen, S. Slinger, S. Dr, and I. L. M. F. Moonen. Title:
Code Smell Detection in Eclipse. 2005.

[65] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. Jdeodorant: Identification and
removal of type-checking bad smells. In Proceedings of the 2008 12th European
Conference on Software Maintenance and Reengineering, CSMR ’08, 2008.

[66] A. J. A. Wang. Information security models and metrics. In Proceedings of the 43rd
annual Southeast regional conference-Volume 2, pages 178–184. ACM, 2005.

[67] J. A. Wang, H. Wang, M. Guo, and M. Xia. Security metrics for software systems.
In Proceedings of the 47th Annual Southeast Regional Conference, page 47. ACM,
2009.

[68] N. Zazworka and C. Ackermann. Codevizard: A tool to aid the analysis of soft-
ware evolution. In Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’10, 2010.

[69] F. Zeng. A machine learning approach to finding bugs.


	Abstract
	1 Introduction
	2 Between a Rock and a Hard Place
	2.1 Formal Verification
	2.2 Testing

	3 No Single Metric is Comprehensive
	3.1 Lines of Code is a Bad Metric
	3.2 Other Metrics Are Also Noisy

	4 Maybe More Metrics?
	4.1 Finding More Code Properties
	4.2 Leveraging Bug-finding Tools

	5 Extracting More Signal from More Noise
	5.1 The Testbed
	5.2 Training the Model
	5.3 Using the Metric

	6 Conclusion

