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Abstract of the Dissertation

A Library Operating System for Compatibility

by

Chia-Che Tsai

For the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

2017

Compatibility challenges occur when sharing an application across system interfaces such

as Linux and Windows APIs, or reusing an application on a disruptive hardware such as Intel

SGX [122]. Existing approaches require either exhaustively porting applications to new APIs

or preserving all previous APIs for backward compatibility. Since both approaches are time-

consuming, developers urgently need a solution to the compatibility issues on innovative OSes

or hardware, to promptly benefit average users. This thesis demonstrates a library OS approach

for reusing unmodified applications on a new OS or hardware. The approach starts with defining

a host ABI which is simple to port and also sufficiently contains essential OS abstractions such

as file and page management. The host ABI divides the development of a compatibility layer into

API emulation in a library OS and encapsulating host distinction with a PAL (platform adaption

layer).

This thesis presents the Graphene library OS, which demonstrates the simplicity and suf-
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ficiency of its host ABI by enumerating host abstractions used for emulating Linux system calls

and the related porting efforts. For instance, Graphene emulates multi-process abstractions using

two host abstractions: creating a new process, and a simple RPC stream. Leveraging a distributed

coordination model, multiple Graphene instances across processes collaboratively present a united

OS view to an application. Two main porting targets of Graphene, Linux, and SGX, each present

challenges to enforcing security isolation. On a Linux host, Graphene isolates mutually-untrusting

applications. On SGX, Graphene protects a security-sensitive application against an untrusted OS.

From a security perspective, Graphene restricts the attack surface through system interfaces and

simplifies security checks against unexpected exploitations. Finally, this thesis presents quantita-

tive measurements to evaluate the partial compatibility of OS prototypes and importance of APIs,

to help to prioritize API porting.
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Chapter 1

Introduction

Operating systems simplify programming of an application to utilize hardware with different in-

terfaces and features. A UNIX-style OS [142] encapsulates hardware distinction using system

interfaces such as the system call table. Without system interfaces, developers have to program

against hardware interfaces defined by manufacturers. Programming against hardware interfaces

restricts applications to specific hardware. Operating systems allow application developers to pro-

gram against a consistent, hardware-independent system interface so that the applications can be

portable across hardware configurations.

In general, OS developers preserve old system interfaces to maintain compatibility for ex-

isting application binaries. This thesis defines compatibility of an OS as the ability to reproduce

a system interface with the requirements of applications. Many developers deploy applications as

native binaries, with the use of system interfaces hard-coded inside the binary code. To accom-

modate unmodified application binaries, OS developers share a common goal of keeping system

interfaces consistent across OS versions, or backward-compatible. Compatibility is also a goal for

less widely-used OSes, such as FreeBSD, to emulate a more popular system interface, such as the

Linux system call table, to reuse more well-adopted applications.

Unfortunately, the recent trend of hardware development has challenged the feasibility of

maintaining the compatibility of a system interface. Although most new hardware shares the in-

terfaces and semantics with their predecessors, more cutting-edge hardware tend to leak out of

the common hardware abstractions encapsulated by an OS. One example is SGX (software guard

extensions) [122] on recent Intel CPUs. SGX protects an application with integrity and confi-

dentiality, without trusting other system components such as OSes, hypervisors, and system soft-
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ware. Although an SGX application may still utilize system interfaces for OS functionality such

as file systems and networking, the application does not assume the OS to be reliable. Therefore,

SGX raises several compatibility issues to existing system interfaces, including security challenges

such as validating untrusted system call results [55]. Other examples exist among research hard-

ware, such as asymmetric multi-processing architectures without inter-connected memory [53, 79],

which challenges inter-process coordination. As more disruptive hardware may emerge in the fu-

ture, applications need an immediate solution to these critical compatibility issues.

Empirically, compatibility has caused struggles in OS development, especially when de-

velopers demand API changes. For instance, Linux and similar OSes introduce system calls such

as openat() as a version of open() without TOCTOU (time-to-check-to-time-to-use) vulnera-

bilities. Unfortunately, to fully replace the original open(), developers need to modify every

application; otherwise, Linux developers can never retire the unsafe version. At a larger scale,

an early version of Windows Vista introduces a brand-new user interface API and file system but

ends up losing popularity due to compatibility-related complaints [158]. Because users may pri-

oritize compatibility over the adoption of new technology, early stable versions of the OS, such as

Windows XP, remain popular even after end-of-service (EOL) [17].

There are practical reasons to maintain compatibility for unmodified applications in a com-

mercial OS. The development of a commercial application includes a long process of thoroughly

testing and examining the code to ensure correctness and safety. Modifying an application for a

new system interface can introduce new risks to stability and extra cost to restart the debugging

cycle. Moreover, third parties may have no access to source code of proprietary software even

if they are motivated to port the applications. All these dilemmas call for a universal solution to

mitigating compatibility issues on reusing unmodified applications.

Compatibility issues alienate users from system interface alternatives that grant access to

new hardware or introduce security or performance benefits. This thesis proposes a general ap-

proach to building a compatibility layer for translation of a legacy system interface. A compati-

bility layer between an application and an OS can bridge the gap between system interfaces. Take

SGX for example; compatibility challenges on SGX include secure dynamic loading, redirecting

system calls to host OSes, and security checks against untrusted system calls. The approach re-

duces the effort of porting a compatibility layer to any host OSes and hardware, by eliminating the
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cost of reimplementing various complex system APIs on each host.This thesis presents a solution

to building a rich-feature compatibility layer, without the tremendous cost of updating applications

to adjust for a new system interface.

This thesis presents Graphene, a library OS for running unmodified applications on inno-

vative hardware and alternative system interfaces. A library OS [31, 72, 119, 138] is a library

which emulates OS features and APIs in an application process. This thesis focuses on building

a library OS using a simple host interface defined for portability. Defining such a host interface

is equivalent to finding a “pinch point” inside an OS; the host interface partitions OS components

above this boundary, such as system calls and namespaces, into the library OS to make the compo-

nents reusable across host OSes and hardware. This approach simplifies the porting effort per host

as exporting the host interface using a PAL (platform adaption layer).

Graphene reproduces a rich of Linux system calls for a wide range of commercial applica-

tions in server or cloud environments. Graphene primarily targets three types of applications. The

first is a server or cloud application, such as Apache or Memcached. The second is a command-

line program used in a UNIX environment, such as a shell program or a compiler. The last is a

language runtime, such as R, Python, or OpenJDK, which heavily deploys system interfaces for

language features such as dynamic loading and garbage collection. Graphene implements 145 out

of 318 Linux system calls.

Graphene defines a host ABI (application binary interface) which contains only essential

host abstractions that are easy to port on different host OSes. This thesis demonstrates the simplic-

ity by experimenting the porting on two sample hosts—a native Linux kernel and an SGX enclave

on an untrusted Linux host. The choices of host targets cover two extreme cases of compatibility

support with opposite security models. This thesis enumerates the development effort of translat-

ing and securing the host ABI on each host, as demonstration of simplicity. Other ongoing ports of

the host ABI include alternative OS kernels such as Windows, OS X, and FreeBSD, and research

OSes such as L4 microkernels [106] and Barrelfish [44].

Building a library OS is similar to virtualizing a part of an OS. A virtualization solution

reuses OS components upon an intermediate interface such as a virtual hardware interface. A vir-

tual machine (VM) usually carries an unmodified, full-fledged OS kernel to reproduce the whole

system stack that implements a system interface. Although a VM provides full compatibility for
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existing applications, it requires a virtualizable architecture [137] or assistance from hardware vir-

tualization such as VT (virtualization technology) [169] to mitigate software virtualization over-

heads.

Compared to the alternatives, the library OS approach strikes a better balance between

simplicity of porting and sufficiency of compatible OS functionality. A study of Linux system

interface [166] show that system calls are not equally important to applications. Applications also

subject to different popularity among users, as shown in installation statistics [168]. A portion

of Linux system calls are strictly for administrative purposes, such as configuring Ethernet cards

and rebooting the machines, and are exclusively used by system software such as ifconfig and

reboot. As a result, a library OS can selectively implement system calls based on importance for

applications with porting value.

Graphene inherits a part of the host ABI from Drawbridge [138], a library OS developed for

Windows applications. Drawbridge uses the library OS as a lightweight VM to run Windows desk-

top applications in a guest environment. Using a library OS also improves the density of packing

the guests on a physical host due to significantly lower memory footprint than a VM. Bascule [45]

later adopts the design to implement single-process system calls in Linux. Haven [46] further

ports Drawbridge to SGX, to shield Windows application from untrusted host OSes. Graphene

presents solution to running unmodified applications upon a variety of host OSes and hardware,

with a host interface defined for both simplicity of porting and sufficiency for developing a rich

Linux-compatible library OS.

The contributions of this thesis over previous work are as follows. First, this thesis defines

a host ABI which is easy to port on new host platform, by enumerating the porting effort, including

translating host system interfaces and enforcing security checks. Second, this thesis demonstrates

the development of a library OS using the host ABI, and presents emulation strategies for complex

Linux features such as multi-process abstractions, with reasonable overheads and memory foot-

prints. Third, this thesis presents a quantitative method of evaluating compatibility to prioritize

system interface emulation in a library OS or a research prototype.
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1.1 Motivating Examples

This section shows two examples in which developing a compatible system interface for existing

applications is challenging, to motivate the approach of the Graphene library OS.

1.1.1 Unmodified Applications on SGX

SGX [122], or Software Guard Extensions, are a set of new instructions on Intel CPUs. The

purpose of SGX is to protect application code from compromised OSes, hypervisors, and system

software, with both integrity and confidentiality protection. The abstraction of SGX is an enclave,

which isolates and protects an application on an untrusted host to harvest the CPU and memory

resources. Application code and data inside an enclave are both signed and encrypted inside the

DRAM when leaving the CPU package. SGX also offers remote attestation of the integrity of an

enclave and the CPU. SGX provides opportunities for delegating security-sensitive operations to

an untrusted public cloud or client machine.

Despite the benefits, the typical expectation for SGX is that developers need to port a piece

of application code to run inside an enclave. The restriction is for both security and simplicity since

each enclave needs a static code image with security measurement signed by users. Developers

also have to remove system calls and instructions such as cpuid and rdtsc since they compro-

mise security without further enforcement. For instance, system calls serviced by an untrusted OS

may return malicious results to exploit semantic flaws in an application caused by being unaware

of the attack vectors. SGX forbids cpuid and rdtsc because these instructions are easily inter-

cepted or spoofed by an OS or a hypervisor. These restrictions introduce porting efforts to existing

applications on SGX.

The threat model of SGX distrusts OS services, except APIs that operate entirely inside an

enclave (e.g., malloc() and memcpy()). The absence of trusted OS services is an issue for porting

any application to SGX. Existing solutions combine a modified C library with applications, to

redirect system calls to the untrusted OS [39, 152]. The problem, however, is in checking the

results of system interfaces, because the OS is not trusted. Previous work [55] shows that checking
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(Parent process: "sh")
char pid[10], *argv []={"kill",pid ,0};

itoa(getpid (), pid , 10);

if (!fork()) // clone a process

execv("/bin/kill", argv);

wait(NULL); //wait for signal

(Child process: "kill")

pid=atoi(argv [1]);

//send a signal

kill(pid , SIGKILL);

Figure 1.1: Sample code for Linux applications using process cloning and inter-process communication
(IPC).

untrusted system interface results can be subtle because the existing system interfaces are not

designed for an untrusted or compromised OS.

In summary, the previous porting models of SGX requires modifying application binaries

and injecting security checks for all the OS features used by an application. This thesis argues

that introducing a library OS into enclaves restricts the interaction with an untrusted OS to only

OS services which have clear semantics for checking. By implementing the host ABI inside an

enclave, users can quickly port an unmodified Linux application, such as an Apache server or a

Python runtime, upon a trusted library OS.

1.1.2 Emulating Multi-Process Abstractions

One characteristic of a UNIX program is the utilization of multi-process abstractions, such as

fork(), exec(), and inter-process communication, to program self-contained sessions or com-

mands. In particular, fork() is a unique feature of UNIX-style OSes, such as Linux and BSD,

which clones a process with address space isolation between the parent and child. Multi-process

abstractions are convenient for creating a temporary session for processing incoming requests or

commands and destroying the session without corrupting the parent process.

For programmability, Linux and similar OSes export several inter-process communication

(IPC) mechanisms, each with unique use cases and semantics. The Linux IPC essentially combines

the UNIX System V features, such as message queues and semaphores, and POSIX abstractions,

such as signaling and namespaces, to present a wide range of options for programming. Figure 1.1

shows a code example of two Linux programs (“sh” and “kill”) running in parallel as part of

a multi-process application and communicating with signals. A unique process identifier (PID)

known by all processes determines the destination of a signal. These kinds of identifiers or names
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are globally shared, as part of the POSIX namespaces, among applications or processes visible to

each other.

Monolithic OSes such as Linux implements IPC mechanisms as shared states in a coherent

kernel space. Sharing kernel states, however, causes process sandboxing to be vulnerable in the

kernel space. An isolated OS design tends to avoid sharing private OS states with other applica-

tions.

Moreover, not all architectures share the same assumption of having an inter-connected, co-

herent memory. Several recent architectures lack memory coherence in exchange for simplicity of

implementation [53, 79]. Barrelfish [44] demonstrates an efficient OS design, called multikernels,

which runs distributed OS nodes on CPUs with inter-node coordination by message passing. The

distributed OS design resonates with the Graphene library OS, which uses RPC (remote procedure

call) streams to implement multi-process abstractions. Since Graphene does not assume a coherent

kernel space, it can be a flexible option for porting multi-process applications to a variety of OSes

and architectures.

1.2 Security Isolation

As a bonus benefit, Graphene reduces the complexity of enforcing security isolation on applica-

tions, under different threat models. For instance, on a Linux host, the security implication of using

Graphene is to isolate mutually-untrusting applications, similar to running each of these applica-

tions inside an OS sandbox. An SGX host, on the other hand, enforces a different threat model,

where an enclave untrusted any OS components and applications running outside of the enclave.

With two opposite threat models, Graphene shows how to simplify security isolation by separating

API implementation from enforcing security policies.

Similar to the complexity of emulation, security isolation inside a monolithic OS is delicate

and prone to vulnerabilities. The host ABI of Graphene simplifies the isolation of OS abstractions

down to three host abstractions that are sharable among picoprocesses: files, network connections,

and RPC streams. For each of these sharable host abstraction, Graphene enforces isolation policies

using semantics commonly known and used by security experts; for instance, to specific file access
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rules, users provide a list of permitted files, similar to a profile for the AppArmor kernel module.

For network connections, users specify firewall-like network rules, to allow an application to bind

to a local network address or to connect to a remote network address. Finally, for RPC streams,

Graphene blocks merely any RPC streams which cross sandbox boundary. This thesis shows that,

by enforcing isolation rules on three host abstractions, the PAL ABI isolates the whole system call

table inside each picoprocess.

For SGX, Graphene addresses a specific set of security isolation challenges. In addition

to isolating mutually-untrusting applications, Graphene also protects an SGX application from un-

trusted operating systems, hypervisor, or system software. Existing system APIs, such as system

calls, expose an extensive attack surface to an untrusted host, where an adversary can manipulate

system API results to explore attack vectors [55]. Graphene simplifies the protection against ran-

dom system API results which may or may not be malicious, by redefining a fixed-width enclave

interface with security checks in mind. This thesis also enumerates the security checks for each

enclave call, to verify the completeness of protection against untrusted host components.

1.3 Summary

This thesis contributes a library OS design, called Graphene, which demonstrates the benefits of

reusing unmodified Linux applications, upon new hardware or OS prototypes. Compared with

ad-hoc translation layers, a library OS with a rich of Linux functionality (145 system calls) can

adapt to various host platforms, as a compatibility layer for applications. Graphene overcomes the

OS and hardware restrictions on a host, with acceptable performance and memory footprint. This

thesis further reasons about the sufficiency of a library OS for running frequently-reused applica-

tions. This thesis also bases the reasoning on a metric which evaluates the partial compatibility of

a system interface. Graphene prioritizes relatively indispensable system calls over administration-

specific or unpopular features, to reuse a wide range of applications, from server applications to

language runtimes.

Previous Publications. The initial design of the Graphene library OS is presented in [164],

which emphasizes on security isolation, between mutually-untrusted applications. A later pub-
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lication [27] focuses on porting the host ABI to Intel SGX and demonstrates security benefits over

using a thin API redirection layer. [166] presents the compatibility metrics for compatibility, with

a study of the Linux API usage among Ubuntu users and applications.

1.4 Organization

The organization of the rest of this thesis as follows: Chapter 2 describes the overview of Graphene

and design principles. Chapter 3 formally defines the host ABI and provides a specification of a

PAL. Chapter 4 discusses the library OS in details. Chapter 5 describes the PAL on Linux, as an

example of implementing the host ABI and isolating library OS instances. Chapter 6 discusses

SGX-specific challenges to application porting and PAL implementation in an enclave. Chapter 7

evaluates the performance. Chapter 8 presents a quantitative metric for compatibility, to evalu-

ate the completeness of Linux functionality. Chapter 9 discusses the related work. Chapter 10

concludes the thesis.
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Chapter 2

System Overview

This chapter gives the overview of Graphene. This thesis divides the development of Graphene into

two parts. The first part is a host interface which encapsulates any host-level abstractions, using a

PAL (platform adaption layer). The second part is a library OS which emulates a substantial subset

of Linux system calls on the host interface. This chapter first introduces the host interface and

its design principles, followed by the discussion of the library OS emulation strategies and design

trade-offs.

2.1 The PAL ABI

The development of Graphene starts with defining a simple host ABI (application binary interface)

called the PAL ABI, containing only OS abstractions essential to target applications. The PAL

ABI separates the implementation of an existing system API (application programming interfaces),

which determines the compatibility against applications, from hardware abstraction features, such

as file systems, network stacks, and device drivers. Graphene moves the system API components

to a library OS in the userspace and reimplements the functionality using the PAL ABI. To port

Graphene to a new host OS or hardware, OS developers only have to implement the PAL ABI on

the target host system API, instead of paying a tremendous cost to translate the whole system API

specification. Figure 2.1 illustrates the porting process of Graphene.
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Figure 2.1: Porting model of Graphene.

2.1.1 Platform Adaption Layers

For each host OS or hardware, Graphene uses a thin library called a platform translation layer

(PAL) to translate among host interfaces. The main purpose of a PAL is to mitigate the semantic

gap between the PAL ABI and native host system APIs. By implementing a PAL on a new host OS

or hardware, users can reuse the same library OS to run the same collection of unmodified Linux

applications.

Graphene currently contains PAL implementations for several popular OSes, including

Linux, Windows, OS X, and FreeBSD. Most of these OSes provide a POSIX-like system API

similar to the PAL ABI. Due to the similarity, translating most of the PAL ABI to one of the sys-

tem APIs are straightforward for average OS developers. The PAL ABI is also much smaller than

the actual POSIX API, making it extremely portable.

A part of the PAL ABI may be challenging to port on an OS, due to unexpected system as-

sumptions made by the OS. For instance, Windows does not support fine-grained memory deallo-

cation for de-privileged applications. To implement system calls like munmap() and mprotect(),

Graphene needs host ABIs to deallocate or protect virtual memory pages at page granularity. A

few host abstractions such as a bulk IPC feature are optional to the host ABI; if a host OS does not

support these abstractions, the library OS must fall back to alternatives.
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2.1.2 Definitions and Design Principles

Graphene defines 40 calls in the PAL ABI (also called PAL calls), with a set of host abstractions

sufficient for library OS development. This thesis defines a host of the PAL ABI to be an OS or

hypervisor which contains enough OS functionality for running a standalone application or virtual

machine. Most of the host targets in Graphene are monolithic OSes, including Linux, Windows,

OS X, and FreeBSD. A monolithic OS usually contains a massive amount of system APIs, which

is sufficient for implementing the PAL ABI.

A special example of a host is an SGX (Software Guard Extensions) enclaves [122], which

restricts OS functionality for security reasons. The restrictions on SGX are results of a strong threat

model which distrusts any OS features except ones that are virtualized by the CPUs or migrated

into enclaves. The only way to obtain any missing OS features such as storage or networking is

to request through RPC (remote procedure call). Requesting untrusted OS services through RPC

also introduces new security threats that application developers tend not to anticipate [39, 55].

Due to all the compatibility and security challenges discussed above, this thesis uses SGX as a

representative example of a host with unusual assumptions (e.g., threat models) and restrictions

compared to a monolithic OS.

The PAL ABI shares several characteristics with a virtual hardware interface exported by

a hypervisor. A generic, backward-compatible virtual hardware interface allows an unmodified

OS kernel to run inside a virtual machine as on the bare metal. The key difference between a

virtual hardware interface and the PAL ABI is that the PAL ABI does not target reusing a whole,

unmodified OS kernel as a guest. Instead, the PAL ABI contains higher-level abstractions such

as files and network sockets to ensure portability on most host OSes. The concept of defining the

PAL ABI with a customized guest OS (i.e., a library OS) running atop the PAL ABI is similar to

para-virtualization. A para-virtualized VM defines hypercalls as interfaces between a guest OS and

a hypervisor. Furthermore, the PAL ABI avoids duplication of OS components such as scheduler,

page fault handler, file systems, and network stacks between the host and library OS. To compare

a VM and a library OS on a spectrum, a VM reuses a whole OS on a wide, backward-compatible

virtual hardware interface whereas a library OS implements only system API components on a

simplified host ABI.
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The following paragraphs discuss the key design principles of the PAL ABI, including

porting simplicity, sufficiency for library OS development, and ease of migration.

Porting Simplicity. To reduce porting efforts, Graphene defines the PAL ABI using two strate-

gies: first, Graphene significantly reduces both the size and complexity of host OS features that OS

developers have to implement. Effectively, Graphene avoids duplicated OS features and handling

rare corner cases on the PAL ABI. Second, the definition of the PAL ABI imitates common system

APIs in a POSIX-like monolithic OS, to directly translate most calls to a few similar host abstrac-

tions. For instance, the stream APIs in the PAL ABI, such as StreamRead() and StreamWrite()

are similar to system calls like read() and write() exist on Linux, BSD, and POSIX API, or

ReadFile() and WriteFile() on Windows. As the rest of this thesis proves, porting the PAL

ABI is straightforward on most monolithic OSes.

Sufficiency for Library OS Development. To develop a library OS with compatibility against

a wide range of applications, the PAL ABI contain any OS abstractions that the library OS can-

not easily emulate. For most hosts, the host OS abstractions include process creation, memory

management, and I/O (typically, files and network connection) [66]. For each type of abstrac-

tions, a monolithic OS may define several variants of system APIs with similar functionality. For

instance, Linux provides two system calls, mmap() and brk(), both for memory allocation in a

process. mmap() allocates larger memory regions with page granularity, whereas brk() simply

grows a single, continuous heap space for more fine-grained allocation. Many applications such

as GCC [7] switch among system API variants in case one of them is unavailable on certain OS

distributions. This thesis shows that, by adopting only the semantics of one of these similar APIs

or abstractions, the host OS can stay simple with the library OS emulating the rest of APIs. For in-

stance, the PAL ABI includes VirtMemAlloc() as a similar feature as mmap(), which is sufficient

to emulating both mmap() and brk().

Graphene defines the PAL ABI partially based on Drawbridge, a library OS for single-

process Windows applications. The host ABI of Drawbridge contains 36 functions, and several

works have ported the host ABI to different hosts, including Windows, Linux, Barrelfish, and

SGX [45, 46, 138, 159]. Although running Windows and Linux applications may face a different

set of challenges, the nature of their APIs is mostly similar, with a few exceptions. During the
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development of Graphene, developers found the occasions in which the host ABI of Drawbridge is

not sufficient to address Linux-specific challenges and decide to extend the PAL ABI. Section 2.1.3

and Chapter 3 will further discuss the Linux-specific extensions of the PAL ABI.

Migration. The Graphene library OS shares several features of VMs, including checkpointing

and migrating a running application. Migrating a process is also the key to emulating copy-on-

write forking, on a host without physical memory sharing (e.g., SGX). A hypervisor checkpoints

and migrates a VM by snapshotting the VM states above a stateless virtual hardware interface. The

PAL ABI is also defined to be statelessness, by ensuring any states in the hosts to be temporary

and reproducible to the applications and library OS.

2.1.3 PAL Calls Definitions

Table 2.1 lists the 40 calls defined in the PAL ABI: 25 calls are inherited from the Drawbridge

host ABI, including functions to managing I/O (e.g., StreamOpen()), memory allocation (e.g.,

VirtMemAlloc()), scheduling (e.g., ThreadCreate()), and several miscellaneous functions (e.g.,

SystemTimeQuery()). 14 calls are added by Graphene, to implement Linux-specific features. For

example, unlike Windows or OS X, Linux delivers hardware exceptions to a process as signals.

Linux also requires the x86-specific segment registers (i.e., FS/GS registers) to determine the loca-

tion of thread-local storage (TLS), which can be hard-coded in application binaries by a compila-

tion mode of GCC. On Windows or OS X, the x86-specific segment registers are mostly ignored,

and even frequently reset to eliminate attack vectors. Graphene discovers these abstractions as a

necessity for implementing a rich Linux library OS.

Graphene introduces five calls for remote procedure call (RPC) between library OS in-

stances in a multi-process application. Graphene simplifies porting multi-process abstractions on

each host OS to implementing RPCs. The basic RPC abstraction is a pipe-like RPC stream for

message passing between processes. To improve performance, the PAL ABI defines an optional,

bulk IPC abstraction to send large chunks of virtual memory across processes.
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Abstraction Function Names Description
Streams StreamOpen

StreamRead

StreamWrite

StreamMap

StreamFlush

StreamSetLength

ServerWaitforClient

StreamAttrQuery

StreamAttrQuerybyHandle

StreamAttrSetbyHandle †

Opening streams using URIs, with pre-
fixes representing stream types (e.g.,
file:,tcp:,pipe:), as well as common
stream operations, including transmission of
data, and query to the stream attributes.

Memory VirtMemAlloc

VirtMemFree

VirtMemProtect

Allocation, deallocation, and protection of a
chunk of virtual memory.

Threads &
scheduling

ThreadCreate

ThreadExit

ThreadDelayExecution

ThreadYieldExecution

ThreadInterrupt †
MutexCreate †
MutexUnlock †
SynchronizationEventCreate

NotificationEventCreate

EventSet

EventClear

StreamGetEvent †
ObjectsWaitAny

Creation and termination of threads; Using
scheduling primitives, including suspension,
semaphores, events, and pollable IO events.

Processes ProcessCreate

ProcessExit

SandboxSetPolicy †

Creating or terminate a process with a library
OS instance.

Miscellane-
ous

SystemTimeQuery

RandomBitsRead

ExceptionSetHandler †
ExceptionReturn †
SegmentRegisterAccess †

Querying system time, and random number
generation. Setting an exception handler, and
returning from the handler.

Remote
Procedure
Call

RpcSendHandle †
RpcRecvHandle †
PhysicalMemoryStore †
PhysicalMemoryCommit †
PhysicalMemoryMap †

Sending opened stream handles or physical
memory across processes.

Table 2.1: An overview of the PAL ABI of Graphene. The ones marked with the symbol † are introduced
in the initial publication of Graphene [164] or later extended for this thesis. The rest are inherited from
Drawbridge [138].
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2.1.4 Host-Enforced Security Isolation

To target multi-tenant environments, Graphene enforces strong security isolation between mutually-

untrusting applications running on the same host. The security isolation of Graphene is comparable

to running each application in a VM or a container. Just as a virtual hardware interface isolating

each VM, the PAL ABI also enforces security isolation between library OS instances.

On a trusted host OS, Graphene delegates security isolation as a host-level feature. The

library OS and the application must mutually trust each other, due to lack of internal privilege

separation in a process. On each host, a reference monitor enforces security isolation policies, by

access control on OS abstractions sharable among processes, including files, network sockets, and

RPC streams. Separating security isolation from API implementation simplifies security checks

for applications that only require complete protection from other tenants.

In Graphene, one or multiple processes of the same application run in a sandbox. Multiple

library OS instances coordinate in a sandbox to present a unified OS view to the application. The

design simplifies the enforcement of security isolation for multi-process abstractions. Graphene

uses the reference monitor to block RPC streams across the sandbox boundary, stopping applica-

tions in different sandboxes from accessing multi-process OS states. The current design focuses

on security isolation, although we do expect to extend the design for more sophisticated policies

in the future.

Threat Model. For most hosts, application trusts the host OSes as well a library OS instances in

the same processes. For multiple processes inside a sandbox, the library OSes in these processes

also trust each other. Applications or library OSes are not trusted by the host OSes or processes

outside of the sandboxes. Applications and library OSes can become the adversary to the host OS,

by exploiting vulnerabilities on the PAL ABI.

The threat model of Graphene on SGX contains the adversary from other hosts but excludes

the host OS, hypervisor, and any hardware except the CPU from its trusted computing base (TCB).

An untrusted OS or hypervisor potentially has lots of opportunities to invade applications or VMs,

using Iago attacks [55]. The challenges of porting Graphene to SGX is not limited to resolving the

compatibility issues of enclaves but also defending applications and library OSes against untrusted

host OSes.
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Figure 2.2: Multi-process support model of Graphene library OS. For each process of an application, a
library OS instance will serve system calls and keep local OS states. States of multi-process abstractions are
shared by coordinating over host-provided RPC streams, creating an illusion of running in single OS for the
application.

2.2 The Library OS

This section gives the overview of Graphene, a library OS for reusing unmodified Linux appli-

cations on the PAL ABI. A library OS is comparable to a partial, guest OS running in a virtual

machine. However, compared with an actual virtual machine, the library OS design of Graphene

and previous work [119, 138] eliminates duplicated features between the guest to the host kernel,

such as the CPU scheduler or file system drivers, and thus reduces the memory footprint.

A principal drawback for prior library OSes is the inability to support multi-process ap-

plications. Many existing applications, such as network servers (e.g., Apache) and shell scripts

(e.g., GNU makefiles), create multiple processes for performance scalability, fault isolation, and

programmer convenience. For the efficiency benefits of library OSes to be widely applicable, espe-

cially for unmodified Unix applications, library OSes must provide commonly-used multi-process

abstractions, such as fork(), signals, System V IPC message queues and semaphores, sharing

file descriptors, and exit notification. Without sharing memory across processes, the library OS

instances must coordinate shared OS states to support multi-process abstractions. For example,

Drawbridge [138] cannot simulate process forking because copy-on-write memory sharing is not

a universal OS feature.

In Graphene, multiple library OS instances collaboratively implement Linux abstractions,

but present single, shared OS view to the application. Graphene instances coordinate states using

message passing over RPC streams. With a distributed POSIX implementation, Graphene can
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Figure 2.3: Building blocks of Graphene. Black components are unmodified. We modify the four lowest
application libraries on Linux: ld.so (the ELF linker and loader), libdl.so (the dynamic library linker),
libc.so (standard library C), and libpthread.so (standard threading library), that issue Linux system
calls as function calls directly to libLinux.so. Graphene implements the Linux system calls using a variant
of the Drawbridge ABI, which is provided by the platform adaption layer (PAL). A trusted reference monitor
that ensures library OS isolation is implemented as a kernel module. Another small module is added for fast
bulk IPC, but it is optional for hosts other than Linux.

create an illusion of running in a single OS for multiple processes in an application.

2.2.1 The Architecture

A library OS typically executes in either a para-virtualized VM [18, 119] or an OS process called

a picoprocess [45, 138], with a restricted host ABI. Graphene executes within a picoprocess (Fig-

ure 2.3), which includes an unmodified application and its supporting libraries, which run along-

side a library OS instance. The Graphene library OS is implemented over the PAL ABI designed

to expose very generic abstractions that are easy to port on any host OS.

As an example of this layering, consider the heap memory management abstraction. Linux

provides applications with a data segment—a legacy abstraction dating back to original UNIX and

the era of segmented memory. The primary thread’s stack is at one end of the data segment, and the

heap is at another. The heap grows up (extended by brk()) while the stack grows down until they

meet in the middle. In contrast, the host ABI provides only minimal abstractions for allocating,

deallocating, and protecting regions of virtual memory. This clean division of labor encapsulates

idiosyncratic abstractions in the library OS.

At a high level, a library OS scoops the layer just below the system call table out of the

18



OS kernel and refactors the code as an application library. The driving insight is that there is

a natural, functionally-narrow division point one layer below the system call table in most OS

kernels. Unlike many OS interfaces, the PAL ABI minimizes the amount of application state in the

kernel, facilitating migration. A library OS instance can programmatically read and modify its OS

state, copy the state to another instance, and the remote instance can load a copy of this state into

the OS—analogous to hardware registers. A picoprocess may not modify another picoprocesses’

OS states.

2.2.2 Multi-Process Abstractions

A key design feature of UNIX is that users compose simple utilities to create more significant ap-

plications. Thus, it is unsurprising that many popular applications are multi-process—an essential

feature missing from previous library OSes. The underlying design challenge is minimally expand-

ing a tightly-drawn isolation boundary without also exposing idiosyncratic kernel abstractions or

re-duplicating mechanisms in both the host kernel and the library OS.

For example, consider the process identifier (PID) namespace. In current, single-process

library OSes, getpid() could just return a fixed value to each application. This single-process

design is isolated, but the library OS cannot run a shell script, which requires forking and executing

multiple binaries, signaling, waiting, and other PID-based abstractions.

There are two primary design options for multi-process abstractions in library OSes: (1)

implement processes and scheduling in the library OS; (2) treat each library OS instance as a pro-

cess and distribute the shared POSIX implementation across a collection of library OSes. Graphene

follows the second option, which imposes fewer host assumptions.

Multi-process abstractions inside the library OS also possibly benefit from hardware MMU

virtualization, similar to the model explored by Dune [47]. However, this design reintroduces

a duplicate scheduler and memory management. Moreover, Intel and AMD have similar, but

mutually incompatible MMU virtualization support, which would complicate live migration across

platforms. None of these problems are insurmountable, and it would be interesting in future work

to compare both options.
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In Graphene, multiple library OSes in multiple picoprocesses collaborate to implement

shared abstractions. Graphene supports a rich of Linux multi-process abstractions including copy-

on-write forking, execve(), signals, exit notification, and System V IPC semaphores and message

queues. For instance, when process A signals process B on Graphene, A’s library OS instance

issues a query to B’s instance over a pipe-like RPC stream, and B’s instance then calls the appro-

priate signal handler. The host OS is unaware of the implementation of multi-process abstractions,

as well as security isolation of the corresponding states.

The Graphene library OS is also capable of gracefully handling disconnection from other

library OSes, facilitating dynamic application sandboxing. RPC streams may disconnect at any

time by either the reference monitor or at the request of a library OS. When a picoprocess is dis-

connected, the library OS will handle the subsequent divergence, transparently to the application.

For instance, if a child process disconnect RPC streams from the parent by the reference monitor,

the library OS will interpret the event as if the other process terminated, close any open pipes, and

deliver exit notifications.

Comparison with Microkernels. The building blocks of Graphene are very similar to the system

abstractions of a microkernel [28, 43, 56, 71, 101, 113, 114], except a microkernel often has an even

narrower, more restricted interface than the host ABI. A multi-server microkernel system, such as

GNU Hurd [76] or Mach-US [160], implements Unix abstractions across a set of daemons that are

shared by all processes in the system. Graphene, on the other hand, implements system abstractions

as a library in the application’s address space and coordinates library state among picoprocesses to

implement shared abstractions. Graphene guarantees isolation equivalent to running an application

on a dedicated VM; it is similar to implementing the security isolation model on a multi-server

microkernel by running a dedicated set of service daemons for each application.

2.3 Summary

The Graphene design centers around building a para-virtualized layer (i.e., platform adaption layer)

to reuse OS components, such as the system call table and namespaces in a library OS. Graphene

defines a host ABI, as a new boundary between the OS and userspace. The host ABI is designed to
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be simple enough to port on a new host (containing 40 functions), but expose sufficient functional-

ity from the host to run the virtualized OS components, as a library OS. The host ABI disconnects

the complexity of reproducing existing system interfaces for reusing applications, from resolving

host-specific challenges that occur in OS development, such as defending applications inside of an

SGX enclave.

The Graphene library OS implements Linux system calls for both single-process and multi-

process applications. To reproduce the multi-process abstractions of Linux, the library OS chooses

a design of distributed POSIX namespaces, coordinated using message-passing over RPC streams.

RPC-based coordination is more adaptable than sharing memory among library OS instances or

virtualizing paging.
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Chapter 3

The Host ABI

This chapter specifies the PAL ABI as a key component of the Graphene architecture. The

PAL ABI acts as a boundary between the host and the library OS, and defines several UNIX-like

features. This thesis defines the PAL ABI primarily based on two criteria: simplicity, to bound the

development effort per host and sufficiency, to encapsulate enough host abstractions for library OS

development. This chapter also explains the rationale behind the definitions.

3.1 PAL Calling Convention

The PAL ABI partially adopts the x86-64 Linux convention. A PAL contains a simple run-time

loader that can load the library OS as an ELF (executable and linkable format) binary [74], similar

to ld.so for loading a user library. Inheriting the Linux convention simplifies the dynamic linking

between the application, library OS and PAL, and enables compiler-level optimizations for linking,

such as function name hashing. Another benefit is simplifying debugging with GDB since GDB

only recognizes one calling convention at a time.

Host Differences. A PAL is responsible for translating the calling convention between the host

ABI and a system interface on the host. For example, Windows or OS X applications follow dif-

ferent calling conventions and binary formats from Linux applications. On each host, a PAL acts

as a simple ELF loader. On Windows and OS X, the PALs are developed as application binaries

recognized by the host OSes, but contain ELF loading code for linking Linux application binaries

22



and the library OS. The PALs also resolve calling convention inconsistency such as placement of

function arguments in registers or on stacks.

Error Codes. For clarity, a PAL call only returns two types of results: a non-zero number or

pointer if the call succeeds, or zero if it fails. Unlike the Linux convention, the host ABI does

not return negative values as error codes (e.g., -EINVAL). For applications, interpreting negative

return values from system APIs causes obscure corner cases that applications may easily miss. For

instance, error codes of failed read() system calls may be misinterpreted as negative input sizes,

causing bugs in applications. Instead, a PAL delivers the failure of a PAL call as an exception,

so that the library OS can assign a handler to capture the failure. The design avoids confusing

semantics as interpreting negative return values.

Dynamic Linking vs Static Linking. Graphene dynamically links an application, library OS,

and the PAL inside of a user process. Dynamic linking ensures complete reuse of an unmodified

application, as well as an unmodified library OS. Graphene allows the binaries of application,

library OS, and PAL to be deployed individually to the users. The dynamic linking of applications

is a prerequisite to running most Linux applications without modification or recompilation.

There are cases where users prefer static linking on a host (e.g., SGX) and consider recom-

pilation acceptable. Compiling an application, library OS, and PAL into a single binary is useful

for reducing the memory footprint in unikernels [119], by compiling out unnecessary code and

data segments. It is possible for Graphene to statically link an application with the library OS and

a PAL, but this technique is out of the scope of this thesis and left for future work.

3.2 The PAL ABI

This section defines the PAL ABI, as a developer’s guide to porting. This section describes the

usage of each PAL call, followed by justifications of simplicity and sufficiency.
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3.2.1 Stream I/O

An OS typically supports three types of I/O: (1) storage, for externalizing data to a permanent

store; (2) network, for exchanging data with another machine over the internet; (3) RPC (remote

procedure call), for connecting concurrent applications or processes. A host OS must contain these

I/O abstractions and manages the related I/O devices such as storage and network devices. It is

also important to share these I/O abstractions among multiple processes of an application.

The I/O abstractions are simple byte streams. Byte streams send or receive data over I/O

devices or in-kernel queues as continuous byte sequences. On a storage device, a byte stream

is logically stored as a sequential file, but physically divided into blocks. On a network device,

the hardware sends and receives packets for a byte stream, using identification with an IP address

and a port number. An RPC stream can be simply a FIFO (first-in-first-out), which applications

or processes use to exchange messages. Similar to the API of a UNIX-style OS, which treats

“everything as a file descriptor” [141], the PAL ABI encapsulates different types of I/O devices

through unified APIs such as reading and writing. Byte streams simplify managing various types

of I/O in the library OS.

The PAL ABI identifies I/O streams by URIs (unified resource identifier). A URI is a

unique name to describe an I/O stream, including a prefix to identify the I/O type and the infor-

mation for locating an I/O stream on the related I/O device. The prefix of URI can be one of the

following keywords: “file:” for regular files; “tcp:” and “udp:” for network connections; and

“pipe:” for RPC streams. The rest of the URI represents an identifier of the I/O stream. For

instance, a file URI identifies a file by the path in the host file system. A network URI identifies

the IP address and port number of a network connection. The URIs standardize identification of

I/O resources on host OSes.

The PAL calls for stream I/O are as follows: StreamOpen() creates or opens an I/O stream;

StreamRead() and StreamWrite() send and receive data over a stream; StreamMap() maps a reg-

ular file to the application’s memory; StreamAttrQuery() and StreamAttrQuerybyHandle() re-

trieves stream attributes; ServerWaitForClient() blocks and creates streams for incoming net-

work or RPC connections; StreamSetLength() truncates a file; StreamFlush() clears the I/O

buffer inside the host OS. The following sections will discuss the PAL calls in detail.
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3.2.1.1 Opening or Creating an I/O Stream

HANDLE StreamOpen (const char *stream_uri ,

u16 access_flags , u16 share_flags ,

u16 create_flags , u16 options);

StreamOpen() opens or creates an I/O stream based on the URI given by stream_uri. The

specification of StreamOpen() includes interpreting the URI prefixes and syntaxes of stream_uri,

and allocating the associated resources in the host OS and on I/O devices. If StreamOpen()

succeeds, it returns a stream handle. The library OS stores the stream handle as a reference to

the opened I/O stream. A stream handle is an opaque pointer, and the library OS only references

the handle as an identifier instead of trying to interpret the handle content. On the other hand, if

StreamOpen() fails (e.g., invalid arguments or permission denied), it returns a null pointer with the

failure reason delivered with an exception.

Other parameters of StreamOpen() specify the options for opening an I/O stream:

• access_flags specifies access mode of the I/O stream, to be either RDONLY (read-only),

WRONLY (write-only), APPEND (append-only), and RDWR (readable-writable). The first three

access modes are only available for regular files. The access modes specify the basic per-

missions for the library OS to access the opened stream. The access flags are checked by

the host OS, based on security policies. For example, the library OS can only append data

to a file opened with the APPEND mode.

• share_flags specifies permissions to share a regular file (ignored for other types of I/O

streams) with other applications. share_flags can be a combination of six different values:

OWNER_R, OWNER_W, and OWNER_X represent the permissions to be read, written, and executed

by the creator of the file; OTHER_R, OTHER_W, and OTHER_X represent the permissions to be

read, written, and executed by everyone else.

• create_flags specifies the semantics of file creation when the file is nonexistent on the

host file system. With TRY_CREATE, StreamOpen() creates the file only when the file is

nonexistent. If ALWAYS_CREATE, the PAL call fails if the file already exists.

• options specifies a set of miscellaneous options to configure the opened I/O stream. Cur-

rently, StreamOpen() only accepts one option: NONBLOCK specifies that the I/O stream will

never block whenever the guest attempts to read or write data. The nonblocking I/O option
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is necessary for performing asynchronous I/O in the guest, to overlap the blocking time of

multiple streams by polling (using ObjectsWaitAny()).

According to the URIs, StreamOpen() can create two types of I/O streams: A byte stream

and a server handle to receive remote connections. A server handle cannot be directly read or

written but can be given to ServerWaitForClient() to block until the next client connection. The

reason that the PAL ABI must support I/O servers is that receiving remote connections requires

controls at the TCP/IP layer and allocating resources in the network stack, and thus cannot be

emulated in the library OS unless the network stack is virtualized.

StreamOpen() accepts the following URI prefixes and syntaxes for creating a byte stream

or a server handle:

• file:[path] accesses a regular file on the host file system. The file is identified by a

path, containing directory names from the file system root (/) or current working directory

(CWD). The current working directory is the location where the PAL starts and does not

change during execution. There could be security risks that the target of a relative path may

be ambiguous, especially if the path starts with a “dot-dot” (i.e., walking back a directory).

Therefore, a reference monitor should always canonicalize a relative path before checking

against security policies.

• tcp:[address]:[port] or udp:[address]:[port] creates a TCP or UDP connection to a

remote server, based on the IPv4 or IPv6 address and port number of the remote end. One

a connection is created, it will exist until it is torn down by both sides.

• tcp.srv:[address]:[port] or udp.srv:[address]:[port] create a TCP or UDP server

handle which can receive remote client connections. The address of a TCP or UDP server

can be either IPv4 or IPv6, with a port number smaller than 65536.

• pipe.srv:[name] or pipe:[name] create a named RPC server or a connection to an RPC

server. The name of an RPC server is an arbitrary, unique string. An RPC stream is an

efficient way for passing messages between applications or processes running on the same

host, compared to using a network stream locally. An RPC stream is supposed to have

lower latency than a network stream.

StreamOpen() is easy to port on most host OSes because it limits the types of I/O streams

to three basic and common forms: files, TCP or UDP network sockets, and RPC streams. The
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semantics of StreamOpen() belong to a subset of POSIX’s open() semantics, which coincides

with Windows’s OpenFile() semantics, with parameter options available in both host OSes. URIs

are also ubiquitously recognized and easily translated to host-specific identifiers.

This thesis argues that StreamOpen() supports sufficient I/O abstractions for emulating

Linux I/O features that most server or command-line applications need. Low-level abstractions

such as storage blocks or raw sockets are mostly only important to administration-type applications

such as fsck and ipconfig. Other Linux I/O features, such as asynchronous I/O and close-on-

execve(), are emulatable in the library OS.

3.2.1.2 Reading or Writing an I/O Stream

u64 StreamRead (HANDLE stream_handle , u64 offset , u64 size ,

void *buffer);

u64 StreamWrite (HANDLE stream_handle , u64 offset , u64 size ,

const void *buffer);

StreamRead() and StreamWrite() synchronously read and write data over an opened I/O

stream. Both PAL calls receive four arguments: a stream_handle for referencing the target I/O

stream; offset from the beginning of a regular file (ignored if the stream is a network or RPC

stream); size for specifying how many bytes are expected to be read or written; and finally, a

buffer for storing the read or written data. At success, the PAL calls return the number of bytes

actually being read or written.

StreamRead() and StreamWrite() avoid the semantics of sequential file access to skip

migrating stream handles. The PAL calls only read or write at absolute offsets from the beginning

of an opened file, and do not rely on states stored in the host OSes as the file cursors. Stateless

file access allows migrating a library OS to another process or host without migrating the host OS

states. All host OS states associated with an I/O stream is only meaningful to the host and can

always be recreated by the library OS.

The PAL calls do not support asynchronous I/O, or peeking into network or RPC buffers.

Asynchronous I/O and buffer peeking are essential OS features to many applications and the library

OS can emulate these features using StreamRead(), StreamWrite() and other PAL calls (e.g.,

ObjectsWaitAny()). The library OS can maintain in-memory buffers to store data prematurely
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received from an I/O stream, to service asynchronous I/O and buffer peeking. Chapter 4 further

discusses these features in detail.

The fact that all three types of I/O streams supported by StreamOpen() are simply byte

streams justifies the portability of the PAL calls. StreamRead() and StreamWrite() cover all ac-

cess types on the I/O streams, using synchronous semantics available in most host OSes. StreamRead()

and StreamWrite() also cover both random and sequential access to a regular file and transferring

over a TCP or UDP socket. Other I/O operations (e.g., asynchronous I/O) can mostly be emulated

in the library OS using the two PAL calls.

Alternatives. An alternative strategy is to define asynchronous I/O in the host ABI instead of

synchronous I/O. Although asynchronous I/O may not be universally portable, a library OS can

easily emulate synchronous I/O with asynchronous I/O using a thread to poll I/O events. Asyn-

chronous I/O potentially has more predictable semantics, because the library OS can explicitly tell

which PAL calls will be blocking. This strategy is later taken by Bascule [45]. Graphene chooses

synchronous I/O in the PAL ABI to prioritize portability, but will explore alternative designs in the

future.

3.2.1.3 Mapping a File to Memory

u64 StreamMap (HANDLE stream_handle , u64 expect_addr ,

u16 protect_flags , u64 offset , u64 size);

StreamMap() maps a file stream to an address in memory, for reading and writing data, or

executing code stored in a binary file. StreamMap() creates a memory region as either a copy of

the file, or a pass-through mapping which shares file updates with other processes. When calling

StreamMap(), the library OS can specify an address in memory to map the file, or a null address

(i.e., zero) to map at any address decided by the host OS. expect_addr, offset, and size must

be aligned to allocation granularity decided by the host OS (more discussion in Section 3.2.2).

protect_flags specifies the protection mode of the memory mapping, as a combination of READ

(readable), WRITE (writable), EXEC (executable), and WRITE_COPY (writable local copy). At success,

StreamMap() returns the mapped address; otherwise, the PAL call returns a null pointer.
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The PAL ABI defines StreamMap() for two reasons. First, memory-mapped I/O is suit-

able for file access in certain applications, and cannot be fully emulated using StreamRead() and

StreamWrite(). An application may choose memory-mapped I/O for efficiency, especially for

smaller, frequent file reads and writes. Second, memory-mapped I/O is asynchronous by its na-

ture. An OS is supposed to lazily flush the data written to a file-backed memory mapping. The

feature is difficult to emulate without an efficient way to mark recently-updated pages (e.g., using

page table dirty bits).

Although StreamMap() allows multiple processes to map the same file into memory, it is

hard to guarantee coherent file sharing on every host OSes. To support memory-mapped I/O, a

complete implementation of the PAL ABI must include coherent file sharing. For some host target

where coherent file sharing is impossible, such as an SGX enclave, the PAL ABI implementation

must be considered incomplete. Potentially the library OS can implement a remote memory access

protocol, with significant overheads to intercept memory access and trace unflushed contents. For

most monolithic host OSes, StreamMap() with coherent file sharing is easy to implement using

APIs like mmap() (POSIX) and CreateFileMapping() (Windows).

StreamMap() is sufficient for most use cases of memory-mapped I/O. The library OS can

further manage file-backed memory using PAL calls for page management (e.g., VirtMemProtect()

and VirtMemFree()). A few hardware features, such as huge pages and data execution protection

(DEP), will require extensions to the PAL ABI though. Fortunately, these hardware features are

mostly considered optional in applications and rarely dictate usability.

3.2.1.4 Listening on a Server

HANDLE ServerWaitforClient (HANDLE server_handle);

ServerWaitforClient() waits on a network or RPC server handle, to receive an incom-

ing client connection. A network or RPC server handle cannot be accessed by StreamWrite()

or StreamRead(); instead, the host OS listens on the server handle, and negotiates the hand-

shakes for incoming connections. Once a connection is fully established, the host OS returns a

client stream handle, which can be read or written as a byte stream. Before any connection ar-

rives, ServerWaitforClient() blocks indefinitely. If a connection arrives before the guest calls
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ServerWaitforClient(), the host can optionally buffer the connection in a limited backlog; the

maximal size of server backlogs is up to the user configurations. The host will drop incoming con-

nections when the backlog is full. Other than adjusting backlog sizes, ServerWaitForClient()

covers most of the server-specific behaviors and is easy to port on most host OSes.

3.2.1.5 File and Stream Attributes

bool StreamAttrQuerybyHandle (HANDLE stream_handle ,

STREAM_ATTRS *attrs);

bool StreamAttrQuery (const char *stream_uri , STREAM_ATTRS *attrs);

StreamAttrQuerybyHandle() and StreamAttrQuery() query the attributes of an I/O stream,

and fill in a data structure as STREAM_ATTRS. The only difference between the two PAL calls is

that StreamAttrQuerybyHandle() queries an opened stream handle whereas StreamAttrQuery()

queries a URI without opening the I/O stream in advance. StreamAttrQuery() is convenient for

querying stream attributes when the library OS does not plan to access the data of an I/O stream.

Both PAL calls return true or false for whether the stream attributes are retrieved successfully.

typedef struct {

u16 stream_type , access_flags , share_flags , options;

u64 stream_size;

u64 recvbuf , recvtimeout;

u64 sendbuf , sendtimeout;

u64 lingertimeout;

u16 network_options;

} STREAM_ATTRS;

The STREAM_ATTRS data structure consists of multiple fields specifying the attributes as-

signed to an I/O stream since creation. stream_type specifies the type of I/O stream that the

handle references to. access_flags, share_flags, and options are the same attributes assigned

to an I/O stream when the stream is created by StreamOpen(). stream_size has different meanings

for files and network/RPC streams: if the handle is a file, stream_size specifies the total size of

the file; if the handle is a network or RPC stream, stream_size specifies the size of pending data

currently received and buffered in the host.

The remaining attributes are specific to network or RPC streams. recvbuf and sendbuf

specify the limitation of buffering the pending bytes, either inbound or outbound. recvtimeout
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and sendtimeout specify the receiving or sending timeout (in microseconds) before the other end

abruptly disconnects the stream. lingertimeout specify the timeout for closing or shutting down

a connection to wait for the pending outbound data. network_options is a combination of flags

that specify the options for configuring a network stream. Currently, network_options accepts the

following generic options: KEEPALIVE (enabling keep-alive messages), TCP_NODELAY (no delay in

sending small data), and TCP_QUICKACK (no delay in sending ACK responses).

bool StreamAttrSetbyHandle (HANDLE stream_handle ,

const STREAM_ATTRS *attrs);

Introduced by Graphene, StreamAttrSetByHandle() can configure the attributes of a file

or an I/O stream in the host OS. StreamAttrSetByHandle() accepts an updated STREAM_ATTRS data

structure, which contains new attributes to assign to the I/O stream.

It is a dilemma to decide which stream attributes to define in STREAM_ATTRS. especially

for a network socket. A network socket in a monolithic OS often provides several options to fine-

tune the behavior of network stacks and drivers. Exposing these options on the PAL ABI allows

the library OS to emulate network socket APIs more completely. However, extending the PAL

ABI with network socket options also compromises portability on host OSes that do not provide

equivalence of these features. Eventually, the library OS should not expect every attributes defined

in STREAM_ATTRS to be configurable on every host OSes.

bool StreamSetLength (HANDLE stream_handle , u64 length);

Finally, StreamSetLength() expands or truncates a file stream to a specific length. In

general, the data blocks on storage media are allocated dynamically to a file when the file length

grows. If StreamWrite() writes data beyond the end of a file, it automatically expands the file,

by allocating new data blocks on the storage media. However, a file-backed memory mapping

created by StreamMap() lacks an explicit timing to expand the file when writing to the memory

mapped beyond the end of the file. StreamSetLength() can explicitly request the host to expand

a file to an appropriate length so that sequential memory write will never raise memory faults.

StreamSetLength() can also shrink a file to the actual data size if the file has overallocated re-

sources earlier.
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Potentially StreamSetLength() can be absorbed by StreamAttrSetByHandle(). Currently,

the PAL call is preserved as a legacy from previous versions of the PAL ABI and as an optimization

for file operations which need to frequently update file sizes (StreamAttrSetByHandle() is much

slower than StreamSetLength()).

Listing a Directory. Graphene extends the stream I/O feature in the host ABI to retrieve direc-

tory information. A file system usually organizes files in directories, and allows applications to

retrieve a list of files in a given directory. Instead of adding new PAL calls for directory operations,

the host ABI uses existing PAL calls, namely StreamOpen() and StreamRead(), for listing a direc-

tory. When StreamOpen() opens a file URI that points to a directory, such as “file:/usr/bin”, it

returns a stream handle which allows consecutive StreamRead() calls to read the file list as a byte

stream. The stream handle returns a series of file names as null-terminated strings. The stream

handle cannot be written or mapped into memory.

Character Devices. The host ABI also supports reading or writing data over a character device,

such as a terminal. A terminal can be connected as a stream handle, using a special URI called

dev:tty. Other character devices include the debug stream of a process (the URI is dev:debug),

equivalent to writing to stderr in POSIX.

3.2.2 Page Management

The PAL ABI manages page resources using an abstraction as a virtual memory area (VMA). A

VMA is an aligned, non-overlapping region in a process. The PAL ABI can creates two different

types of VMAs: a file-backed VMA, created by StreamMap(), and an anonymous VMA, created

by another PAL call called VirtMemAlloc().

u64 VirtMemAlloc (u64 expect_addr , u64 size , u16 protect_flags);

VirtMemAlloc() creates an anonymous VMA. When VirtMemAlloc() is given an expected

address, the host OS must allocate memory at the exact address, or it should return failure. If no

address is given (expect_addr is NULL), VirtMemAlloc() can create the VMA at wherever the

host OS sees fit, as long as the VMA does not overlap with any VMAs previously allocated. Both
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expect_addr and size must be page-aligned, and never exceed the permitted range in the guest’s

virtual address space. protect_flags specifies the page protection in the created VMA, and can

be given a combination of the following values: READ, WRITE, and EXEC (similar to StreamMap() but

without WRITE_COPY). If VirtMemAlloc() succeeds, it returns the starting address of the created

VMA, which the library OS is permitted to access up to the given size.

bool VirtMemFree (u64 addr , u64 size);

bool VirtMemProtect (u64 addr , u64 size , u16 protect_flags);

VirtMemFree() and VirtMemProtect() modify one or more VMAs, by either freeing the

pages or adjusting the page protection in an address range. Both PAL calls specify the starting

address and size of the address range to modify; the given address range must be page-aligned but

can be any part of the guest virtual address apace and overlap with any VMAs, either file-backed

or anonymous. If the given address range overlaps with a VMA, the overlapped part is divided into

a new VMA and be destroyed or protected accordingly.

The three PAL calls for allocating, freeing, and protecting virtual pages are generally

portable on POSIX-style host OSes. Applications usually rely on similar coarse-grained page

management features in the host OS to implement user-level fine-grained object allocation, such

as malloc() or class instantiation in managed language runtimes.

However, the real challenge to porting the PAL ABI is to accommodate different allocation

granularities among host OSes. A POSIX-style OS often assumes dynamic allocation with page

granularity (normally with four-kilobyte pages); the assumption is deeply ingrained in the page

fault handler sand page table management inside an OS like Linux or BSD; the page management

component in an OS is usually closely interacting with the hardware interface, to serve the needs

of both the OS and applications. Such an OS design makes it difficult to move page management

into the guest, unless using hardware virtualization such as VT [169]; VT provides a nested page

table to virtualizes page table management and page fault handling to the library OS.

3.2.3 CPU Scheduling

The host ABI for CPU scheduling includes two abstractions: thread creation and scheduling prim-

itives for inter-thread synchronization and coordination. Threading in the host OS requires a CPU
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scheduler to dynamically assign a non-blocking thread to an idle CPU core until next epoch for

scheduling. The host OS usually implements one or several scheduling algorithms and also de-

fines APIs for applications to configure scheduler parameters. Scheduling algorithms and APIs are

mostly idiosyncratic to each host OS and hardly portable on every host OSes.

As a compromise, Graphene focuses on defining host ABIs for CPU scheduling features

essential to application usability. For instance, applications may depend on multiple threads to

execute concurrently, either on different CPU cores or on the same CPU core with a time-sharing

model. Scheduling algorithms in the host OSes must satisfy certain criteria, such as fairness,

throughput, and reasonable CPU utilization. As long as the host OSes have chosen a general-

purpose, maturely-implemented scheduling algorithm, the PAL ABI can omit features for config-

uring scheduler parameters.

3.2.3.1 Creating or Terminating a Thread

HANDLE ThreadCreate (void (* start) (void *), void *param);

ThreadCreate() creates a thread available for scheduling in the host OS. The parameters

specify the initial state of a new thread, including the function to start thread execution and a

parameter to the function. As soon as ThreadCreate() successfully returns, the caller thread and

the new thread can be both scheduled by the host OS. ThreadCreate() returns a thread handle to

reference the new thread in the caller.

To improve portability, Graphene simplifies the definition of ThreadCreate() in several

ways. First, ThreadCreate() does not accept an additional parameter to specify the initial stack.

The simplification helps to port ThreadCreate() on a host where a new thread cannot start on an

arbitrarily-assigned stack. For instance, an SGX enclave statically defines the stack address of each

thread to prevent the host OS from manipulating enclave thread execution. On most host OSes, a

new thread created by ThreadCreate() starts on a fixed-size stack, but the library OS can easily

swap the stack with a much larger one. Second, ThreadCreate() takes no creation options except

a starting function and a parameter. Every thread created by ThreadCreate() should look identical

to the host OS, to keep the abstraction portable on various host options.
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void ThreadExit (void);

ThreadExit() terminates the current thread. The PAL call takes no argument, and should

never return if it succeeds. The purpose of ThreadExit() is to free the resources allocated in the

host OS for the current thread, including the initial stack.

3.2.3.2 Scheduling a Thread

The PAL ABI defines several calls to interrupt a thread, either blocking or running or to allow a

running thread to give up CPU resources voluntarily. The purpose of these scheduling APIs is

to prevent a thread from busily waiting for a specific condition, such as setting a variable to a

specific value or the arrival of a certain time in the future. Busy-waiting wastes CPU cycles, and

can potentially block application execution if the host OS has no enough CPU cores to schedule

each thread or does not implement a time-slicing scheduling algorithm (e.g., round-robin).

u64 ThreadDelay (u64 delay_microsec);

void ThreadYield (void);

ThreadDelay() and ThreadYield() suspend the current thread for rescheduling in the host

OS. ThreadDelay() suspends the current thread for the given timespan (delay_microsec, in mi-

croseconds). If the thread is suspended successfully and rescheduled after the expiration of the

specified period, ThreadDelay() returns zero after resuming thread execution. If the thread is

rescheduled prematurely, due to interruption of other threads, ThreadDelay() returns the remain-

ing time in microseconds.

ThreadYield() simply yields the current execution and requests for rescheduling the cur-

rent thread in the host OS. By calling ThreadYield(), a thread can requests for rescheduling when

it expects to wait for certain conditions. When a thread calls ThreadYield(), the host scheduler

will suspend the current time slice of the thread, and rerun the scheduling algorithm to select a

runnable thread (can be the same thread if there is no other competitor).

void ThreadInterrupt (HANDLE thread_handle);

Graphene introduces ThreadInterrupt() as a PAL call for interrupting a thread and forc-

ing the thread to enter an exception handler immediately. There are two reasons for defining
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ThreadInterrupt(). First, ThreadInterrupt() can interrupt a suspended thread, and force the

thread to resume execution immediately. Second, ThreadInterrupt() can interrupt a running

thread from an infinite waiting loop. Without ThreadInterrupt(), a running thread can only de-

tect events at a certain “checkpoint” in the library OS.

The three abstractions defined for suspension and rescheduling commonly exist on most

host OSes, including Linux, Windows, and OS X. System APIs similar to ThreadDelay() and

ThreadYield() exist in most OSes, with slight but mitigable definition differences. On a POSIX-

compliant OS, a PAL can implement ThreadInterrupt() using a user signal (e.g., SIGUSR1); or

on other OSes such as Windows, similar inter-thread communication mechanisms exist for similar

reasons.

Scheduler Parameters. The PAL ABI currently contains no APIs for the library OS to config-

ure scheduler parameters in the host OS. Linux and other OSes allow applications to configure

scheduling parameters, such as scheduling priorities and policies, to improve CPU utilization. For

simplicity, the PAL ABI delegates scheduling to the host scheduler, and only allows host-level con-

figuration for scheduler parameters. As a result, the library OS cannot emulate any Linux system

APIs for configuring scheduler parameters, such as sched setparam().

Luckily, scheduler parameters does not impact most applications targeted by Graphene.

In general, applications can progress without setting scheduling priorities or policies, but may

suffer poor performance. A rare exception is when an application set the CPU affinity of two

collaborating threads to ensure concurrent execution. Between a producer thread and a consumer

thread, failing to schedule the threads on individual CPU cores may cause the threads to deadlock.

Consider the following scenario: the consumer thread A may busily wait for the producer thread

B to deliver a new job, but never yield the CPU to allow thread B to proceed its execution. We

propose adding a PAL call called ThreadSetCPUAffinity() to support binding a thread to CPU

cores:

bool ThreadSetCPUAffinity (u8 cpu_indexes [], u8 num);

ThreadSetCPUAffinity() binds the current thread to a list of CPU cores, as specified in

cpu_indexes. cpu_indexes is an array of non-negative integers, which must be smaller than the

total number of CPU cores (specified in the PAL control block).
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3.2.3.3 Scheduling Primitives

The PAL ABI defines two scheduling primitives for synchronization between threads: mutually-

exclusive (mutex) locking and event waiting. These scheduling primitives improve user-space

synchronization implemented by atomic instructions or compare-and-swap (CAS). The primitives

prevent a thread from spinning on a CPU core until the state of a lock or an event is atomically

changed, by suspending the thread in the host OS.

HANDLE MutexCreate (void);

void MutexUnlock (HANDLE mutex_handle);

MutexCreate() creates a handle for a mutex lock. A mutex lock enforces atomic execution

in a critical section: if multiple threads are competing over a mutex lock before entering the critical

section, only one thread can proceed while other threads will block until the lock is released again.

MutexUnlock() releases a mutex lock held by the current thread. To acquire a mutex lock, a generic

PAL call, ObjectsWaitAny() (defined later), can be used to compete with other threads, or wait

for the lock release if the lock is held.

HANDLE SynchronizationEventCreate (void);

HANDLE NotificationEventCreate (void);

void EventSet (HANDLE event_handle);

void EventClear (HANDLE event_handle);

SynchronizationEventCreate() and NotificationEventCreate() create two different

types of events. Any thread can use EventSet() to signal an event. Signaling a synchroniza-

tion event wakes up exactly one waiting thread to continue its execution. A synchronization event

coordinates threads that cooperate as producers and consumers; a producer thread can signal ex-

actly one blocking consumer at a time. On the other hand, a notification event stays signaled until

another thread manually resets the event using EventClear(). A notification event notifies the

occurrence of a one-time event, such as the start or termination of execution. ObjectsWaitAny()

is also used to wait for event signaling.

The definition of the two scheduling primitives covers two typical types of synchronization

behaviors. A mutex enforces atomicity of a critical execution section. An event enforces depen-

dency relationship between threads. Both primitives are easy to port on most host OSes; the host
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ABI directly adopts the definition from the Windows API and can be easily implemented on Linux

or similar OSes using futexes or POSIX thread (pthread) APIs.

3.2.3.4 Waiting for Scheduling Events

HANDLE ObjectsWaitAny (HANDLE *handle_array ,

u8 handle_num , u64 timeout);

ObjectsWaitAny() blocks the current thread for specific events listed in a handle array

(specified by handle_array and handle_num). A common usage of ObjectsWaitAny() is to block

on a scheduling primitive, such as a mutex lock or a notification event. If a certain event happens

on one of the listed handles ObjectsWaitAny() resumes thread execution and returns the handle to

the caller. ObjectsWaitAny() can only block on exactly one mutex lock or event but can wait for

multiple I/O events. When waiting on I/O events, ObjectsWaitAny() blocks until one of the listed

stream handles receives incoming data or connections or encounters failures such as I/O stream

shutdown.

ObjectsWaitAny() takes a timeout argument to prevent waiting for an event indefinitely.

If the timeout expires before any event occurs, ObjectsWaitAny() stops blocking and returns no

handle.

ObjectsWaitAny() can poll multiple stream handles until an I/O event occurs such as re-

ceiving inbound data or sudden failure. Unlike a mutex lock or an event object, a stream handle

can trigger multiple I/O events. Therefore, the host ABI introduces a PAL call, StreamGetEvent(),

to create a stream event handle that represents a specific I/O event of the given stream handle. The

definition of StreamGetEvent() is inspired by Bascule [45].

HANDLE StreamGetEvent (HANDLE stream_handle , u16 event);

StreamGetEvent() receives a stream handle and a specific I/O event. The event argument

can be given one of the following values: READ_READY, for notifying that there are inbound data

ready to be read; WRITE_READY, for notifying that a network connection is fully established and

ready to be written; and ERROR, for notifying that certain failures occur on the stream.

38



3.2.3.5 Thread-Local Storage

On some OSes, such as Linux and Windows, applications require a thread-local storage (TLS) to

store thread-private variables or maintain a thread control block (TCB). On x86-64, TLS is often

referenced by one of the FS and GS segment registers, to improve the performance of accessing

any variable in the TLS. As a convention of Linux, many Linux application executables contain

hard-coded access to TLS using the FS register. Since setting the value of the FS/GS registers is a

privileged operations, the PAL ABI requires a call to enter the host kernel and set the registers for

referencing TLS.

u64 SegmentRegisterAccess (u8 register , u64 value);

The PAL ABI introduces a PAL call, SegmentRegisterAccess(), for reading or writing the

FS/GS register value. The register argument can be either WRITE_FS or WRITE_GS, with the value

argument being a pointer that references to the TLS area. Otherwise, the register argument can

be READ_FS or READ_GS, to retrieve the FS/GS register value. On success, the PAL call returns the

current value of FS/GS register.

Unfortunately, the portability of SegmentRegisterAccess() depends on the choice of host

OSes. Linux and similar OSes allow setting FS/GS register in the userspace due to heavy usage of

the FS register in the standard C library. However, in other OSes, especially Windows and OS X,

changing the FS/GS register is forbidden by the OS kernels. The Windows 7, 8, and 10 kernels

confiscate the FS register for storing a thread control block (TCB), and thus forbid users to change

the FS register value. OS X’s xnu kernel considers FS/GS registers to be of no concrete use. These

OS kernels periodically reset the FS/GS registers to mitigate any user attempt of changing them.

If a host OS fails to implement SegmentRegisterAccess(), the library OS may have to develop

workarounds such as binary translation to virtualize TLS access.

3.2.4 Processes

The PAL ABI creates clean, brand-new processes for multi-process applications. A process, or a

picoprocess in the perspective of the library OS, contains a new PAL instance, a new library OS,
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and the application specified to the PAL ABI. The PAL ABI is designed to simplify porting a multi-

process applications, by dropping the assumption of coherent memory sharing across processes.

Therefore, the PAL ABI chooses a completely different process creation model from the typical

copy-on-write forking model of UNIX-style OSes.

HANDLE ProcessCreate (const char *application_uri ,

const char *manifest_uri ,

const char **args , uint flags);

ProcessCreate() creates a clean process to load an application executable specified by

application_uri. ProcessCreate() also allows specifying a manifest file (manifest_uri) for

user policy configuration, as well as command-line arguments (args) passed to the new process.

ProcessCreate() is equivalent to relaunching the specified application in Graphene, except two

distinctions: (1) ProcessCreate() returns a process handle to its caller; (2) a process created by

ProcessCreate() naturally belongs to the same sandbox as its parent. Section 3.2.5 will discuss

the sandbox abstraction in detail.

3.2.4.1 Sharing a Handle

Due to the statelessness of handles, a guest can cleanly migrate its state to a new process, and

recreate all handles afterward. Unfortunately, not all I/O streams can be recreated in a new process,

due to the host limitations; for instance, most host OSes bound network connections with the

processes that first accept the connections, and only allow sharing connections through inheriting

file descriptors from the parent process. Since every process created by ProcessCreate() is a

clean picoprocess without inheriting any stream handles, a guest needs a host feature to share a

network stream handle with other processes.

void RpcSendHandle (HANDLE rpc_handle , HANDLE cargo);

HANDLE RpcRecvHandle (HANDLE rpc_handle);

The PAL ABI introduces RpcSendHandle() and RpcRecvHandle() for sharing I/O stream

handles over an RPC stream (a process handle also an RPC stream). RpcSendHandle() migrates

the host state of a stream handle (cargo) over another RPC stream. RpcSendHandle() then receives

the migrated host states from the RPC stream. RpcSendHandle() will grant the receiving process

permissions to access the I/O stream handle. If RpcSendHandle() succeeds, it returns a handle that
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references to the shared I/O stream. The abstraction is similar to a feature in Linux and similar

OSes that shares file descriptors over a UNIX domain socket.

3.2.4.2 Bulk IPC (Physical Memory Store)

The PAL ABI introduces an optional bulk IPC feature, as an alternative to RPC streams. The

optimization brought by the feature is to reduce the latency of sending large chunks of data across

processes. The main abstraction of bulk IPC is a physical memory store. Multiple processes can

open the same memory store; a process sends the data in a piece of page-aligned memory to the

store, while another process maps the data to its memory. Since the host can enable the copy-on-

write sharing on the data mapped to both processes, the latency can be much shorter than copying

the data over an RPC stream.

HANDLE PhysicalMemoryStore (u32 index);

PhysicalMemoryStore() creates or attaches to a physical memory store, based on a given

index number. The indexing of physical memory stores is independent in each sandbox so that

unrelated processes cannot share a physical memory store by specifying the same index number.

If PhysicalMemoryStore() succeeds, it returns a handle that references to the physical memory

store. The store is alive until every related process closes the corresponding store handles, and no

data remains in the store.

u64 PhysicalMemoryCommit (HANDLE store_handle , u64 addr , u64 size);

u64 PhysicalMemoryMap (HANDLE store_handle , u64 addr , u64 size ,

u16 protect_flags);

PhysicalMemoryCommit() commits the data in a memory range to a physical memory store.

Both addr and size must be aligned to pages, so that the host can enable copy-on-write sharing if

possible. PhysicalMemoryMap() maps the data from a physical memory store to a memory range in

the current process. protect_flags specifies the page protection assigned to the mapped memory

ranges.
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3.2.5 Sandboxing

The security isolation of Graphene is based on a sandbox, a container isolating a number of co-

ordinating library OS instances. When Graphene launches an application, the application begins

running inside a standalone sandbox. By default, a new process cloned by the application share the

sandbox with its parent process. To configure the isolation policies, developers provide a manifest

file for each application. The policies are enforced by a reference monitor in the host. A manifest

file contains run-time rules for sandboxing resources which can be shared in the host, including

files, network sockets, and RPC streams.

Sandboxes delegate enforcement of security isolation to the host OSes. An application

doesn’t have to trust the library OS to enforce security policies, on every applications running

on the same host. If a library OS instance is compromised by the application, the threat will

be contained inside the sandbox, and cannot cross the sandbox boundary, unless the host is also

compromised. For each sandbox, the isolation policies are statically assigned, in the manifest file

given at the launch. The isolation policies cannot be subverted during execution.

The PAL ABI also introduces a PAL call, SandboxSetPolicy(), to dynamically move a

process to a new sandbox. Sometimes, an application needs to reassign the rules of security isola-

tion, for enforcing stricter rules inside the application. A multi-sandbox environment can protect

an application with multiple privilege levels, or an application that creates session for separating

the processing for each client. With SandboxSetPolicy(), a process that requires less security

privilege or serves a separate session can voluntarily moves itself to a new sandbox, with stricter

rules. SandboxSetPolicy() can dynamically assign a new manifest file that specifies the new rules,

to be applied to the new sandbox created for the current process.

bool SandboxSetPolicy (const char *manifest_uri ,

u16 sandbox_flags);

SandboxSetPolicy() receives a URI of the manifest file that specifies the sandboxing rules,

and an optional sandbox_flags argument. The sandbox_flags argument currently can only con-

tain one value: SANDBOX_RPC, for isolating the RPC streams between the original sandbox and the

new sandbox.
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3.2.6 Miscellaneous

Besides managing host resources, the PAL ABI also contains miscellaneous features, such as ex-

ception handling and querying system times. Some of the miscellaneous features, such as excep-

tion handling, are specifically introduced for implementing Linux functionality in the library OS.

This section lists these miscellaneous abstractions in the PAL ABI.

3.2.6.1 Exception Handling

The exception handling in the PAL ABI is strictly designed for returning hardware exceptions, or

failures inside the PAL. The host ABI allows the guest to specify a handler, which the execution

will be redirected to, when a specific exception is triggered. The feature of assigning handlers to

specific exceptions grants a guest the ability of recovering from hardware or host OS failures.

typedef void (* EXCEPTION_HANDLER)

(void *exception_obj , EXCEPTION_INFO *info);

The host ABI defines EXCEPTION_HANDLE as the data type of a valid handler function. A

valid handler accepts two arguments. The first is an exception object, as an opaque pointer which

the host OS maintains to store a host-specific state regarding the exception. The second is a piece

of exception information that is revealed to the exception handler. The content of the exception

information is defined as follows:

typedef struct {

u8 exception_code;

u64 fault_addr , registers[REGISTER_NUM ];

} EXCEPTION_INFO;

The EXCEPTION_INFO data structures consists of three fields. exception_code specifies

the type of exception. fault_addr specifies the address that triggers a memory fault, or an illegal

instruction. registers returns the value of all x86-64 general-purpose registers when the exception

is raised. The exception code can be one of the following values:

• MEMFAULT: a protection or segmentation fault.

• DIVZERO: a divide-by-zero fault.

• ILLEGAL: an illegal instruction fault.

• TERMINATED: terminated by the host.
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• INTERRUPTED: interrupted by ThreadInterrupt() (defined in Section 3.2.3).

• FAILURE: a failure in the host ABI.

When an exception is raised, the current execution is interrupted and redirected to the

assigned handler function. The handler function can try to recover the execution, based on the

information given in the EXCEPTION_INFO data structure. For example, a handler function can print

the interrupted register values to the terminal. Once a handler function finishes processing the

exception, it can return to the original execution, by calling ExceptionReturn() with the exception

object given by the host.

void ExceptionReturn (void *exception_obj);

The host ABI defines ExceptionReturn() to keep the semantics of exception handling

clear and flexible across host OSes. A handler function does not assume that it can return to the

original execution using the ret or iret instruction. Instead, a handler function must explicitly

call ExceptionReturn(), so that the host can destroy the frame that belongs to the handler func-

tion, and return to the interrupted frame. Also, ExceptionReturn() can update the register values

pushed to the interrupted frame, based on the registers field in EXCEPTION_INFO.

bool ExceptionSetHandler (u8 exception_code ,

EXCEPTION_HANDLER handler);

ExceptionSetHandler() assigns a handler function to a specific exception, based on the

given exception_code. The assignment of exception handlers applies to every thread in the same

process. If ExceptionSetHandler() is given a null pointer as the handler, it cancels any handler

previously assigned to the exception. If the library OS does not assign a handler, the default

behavior of handling the exception is to kill the whole process.

3.2.6.2 Querying the System Time

u64 SystemTimeQuery (void);

SystemTimeQuery() returns the current system time as the number of microseconds passed

since the Epoch, 1970-01-01 00:00:00 Universal Time (UTC). Querying the system time requires

the host to have a reliable time source. A common, reliable time source on x86-64 is a system
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timer incremented by the hardware alarm interrupts [118], combined with the Time Stamp Counter

(TSC), a CPU counter tracking the number of cycles since the system reset. SystemTimeQuery()

exports a reliable time source to the guest, based on the calculation of any arbitrary time sources

used in the host.

3.2.6.3 Reading Random Bits

u64 RandomBitsRead (void *buffer , u64 size);

RandomBitsRead() fills the given buffer with data read from the host random number gen-

erator (RNG). If RandomBitsRead() successfully reads up to the number of bytes specified by size,

it returns the number of bytes that are actually read. Based on the host random number generator,

RandomBitsRead() may block until there is enough entropy for generating the random data.

The purpose of RandomBitsRead() is to leverage the hardware random number generators,

either on-chip or off-chip. For example, recent Intel and AMD CPUs support the RDRAND instruc-

tion, which generates random bytes based on an on-chip entropy source. Other hardware RNGs

also exist, mostly based on thermodynamical or photoelectric patterns of the hardware. Graphene

only requires each host to export one trustworthy source of random data, such as /dev/random, a

pseudo-device in POSIX.

3.3 Summary

The PAL ABI consists of a sufficient set of simple, UNIX-like OS features. The goal of defining the

PAL ABI is to ensure host abstractions that are easy to port on various host OS but also sufficient

for developing a library OS with rich features. Individual PAL call, either manages a common

hardware resource, such as memory pages or CPUs, or encapsulates a host OS feature, such as

scheduling primitives or exception handling. For most of the PAL calls, system API with similar

functionality and semantics can be found on most host OSes; Few exceptions (e.g., setting segment

registers) which are challenging to port on certain host OSes (e.g., Windows) are optional and

require workarounds in the library OS.
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Chapter 4

The Library OS

This chapter demonstrates the development of a practical, feature-rich library OS based on the PAL

ABI, for reusing unmodified Linux applications. The main challenge in building the library OS

or libLinux is to recreate the features of the Linux system interface, including system calls and

namespaces on the PAL ABI. The development of libLinux primarily focuses on two criterion:

compatibility, the richness of Linux features and API, and performance, affected by the emula-

tion strategies over the PAL ABI. This chapter shows how libLinux strikes a balance between

compatibility and performance.

4.1 Implementing the Library OS

The library OS of Graphene, or libLinux, is a single library that resides beneath a Linux ap-

plication to reproduce compatible Linux features and APIs. libLinux guarantees reuse of an

unmodified Linux application upon the PAL ABI, regardless of host limitations or distinctions.

An unmodified Linux application assumes the existence of a Linux kernel or equivalent, with

OS-specific features and characteristics, or Linux personality. libLinux reproduces the Linux

personality, to act as a guest-level Linux kernel. Graphene develops libLinux as an ELF dynamic

library (i.e., libLinux.so), and the PAL dynamically loads libLinux.

A key component of libLinux is a Linux system call table, which redirects system calls

from a Linux application. A system call table is an important entry point to a Linux kernel. A

system call table contains pointers to the kernel functions for each system call, indexed by the
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system call numbers (e.g., NR open or 10 on x86-64). Graphene moves the Linux system call

table into libLinux and develops system call handlers in the user space. Each system call handler

emulates the semantics of a system call, based on either the specification described in the man

pages [13] or the bug-for-bug behaviors observed in a real Linux kernel. Some system calls, such

as rt sigaction(), are partially documented in the man pages, and libLinux imitates behaviors

observed in a running Linux kernel.

libLinux currently implements 145 system calls, sufficient to run a range of applications

from servers to command-line programs or runtimes. For reference, a recent Linux kernel sup-

ports more than 300 system calls. A Linux kernel also contains a long tail of infrequently-used

system calls. A study of the Linux system call usage [166] indicates that only 40 system calls

are indispensable to every application released in the Ubuntu official repositories. In the mean-

time, more than 100 system calls are used by only exactly one application or none at all. The

development of libLinux began with implementing 12 system calls, such as read() and open(),

which are fundamental to running a “hello world” application, and gradually grows the system call

count. Graphene also prioritizes the popular system calls and leaves other system calls that are ei-

ther unpopular or for administrative purposes such as rebooting or configuring network interfaces.

libLinux demonstrates the sufficiency of implementing Linux system calls upon the PAL ABI,

for a representative subset of applications.

4.1.1 System Call Redirection

libLinux transparently redirects system calls from a Linux application. In a Linux kernel, a

system call handler triggers the kernel operations whenever an application executes a “SYSCALL”

or “INT $80” instruction. The interrupt handler switches the application context and jumps to

the kernel routines that service the requested system calls. Because libLinux reuses unmodified

Linux executables and libraries, it must redirect unmodified system call invocation to its system

call table.

Normally, libLinux redirects system calls by modifying the C library (libc). Most Linux

executables and libraries rely on libc functions to access OS features instead of invoking system
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calls directly. For example, compared with making the read() system call directly, more com-

monly an application uses libc’s stdio functions or calls the libc read() wrapper which internally

runs SYSCALL. Unless configured otherwise, libLinux uses a modified GNU C library (glibc) [9],

for application binaries from any GNU Linux distributions, including Ubuntu [167]. Graphene can

be configured to use other libc variants, such as uClibc [24] and musl [15] if an application finds

them sufficient.

Graphene modifies only 943 lines of the glibc code. glibc uses a platform-independent

macro, INLINE SYSCALL(), to invoke system calls. The macro INLINE SYSCALL() contains as-

sembly code that copies system call number and arguments to registers, and then uses SYSCALL to

enter a Linux kernel. Graphene modifies INLINE SYSCALL() to redirect a system call to an entry

point of libLinux called syscalldb(). syscalldb() saves the current register state, similar

to a context switch, and then calls the system call handler indicated by the system call number.

For assembly code in glibc, Graphene replaces each syscall instruction with a dynamic call to

syscalldb(), given the address of syscalldb() is dynamically determined. Figure 4.1 summa-

rizes the mechanism of system call redirection.

Graphene modifies four glibc libraries: a runtime dynamic loader (ld.so), a core library

(libc.so), a POSIX thread library (libpthread), and a dynamic loading library (libdl). Each

of the Glibc libraries has separate purposes and features. Graphene only modifies the glibc libraries

which contains direct SYSCALL instructions. Other libraries, such as libm.so, only rely on existing

libc functions, so Graphene leaves these libraries unmodified.

Hard-Coded System Calls. Static binaries, or some platform-dependent applications, contain

hard-coded SYSCALL instructions which cannot be redirected by a modified libc. Application de-

velopers create a static binary with hard-coded system calls by statically linking a local version

of libc as part of the binary. It is also possible to program an application with assembly code that

directly invokes system calls—usually in a language runtime (e.g., the go runtime) or a system

software (e.g., busybox). Because a modified libc cannot redirect hard-coded system calls, the

application switches context into the host kernel, causing security and compatibility breaches by

exposing unauthorized or unsynchronized host OS states to the application.
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Application

libc

main() {
   malloc(10);      asm("SYSCALL" :: "a"(NR_getpid));
}

malloc(size) {
    INLINE_SYSCALL(mmap, 6, ...);
}

libLinuxsyscalldb(sys_NR, args, ...) {
    handler = syscall_table[sys_NR];
    return handler(args);
}
do_mmap(addr, size, ...) {
    VirtMemAlloc(addr, size, ...);
}

PALExceptionReturn(obj) {
    ...
}

IllegalInstrHandler(obj) {
  if (obj->pc[0]==0x0f &&
      obj->pc[1]==0x05) { //SYSCALL(0f 05)
      obj->rax = syscalldb(obj->rax, ...);
      ExceptionReturn(obj);  }
}

VirtMemAlloc(addr, size, ...) {
    ...
}

Host OS

function call SYSCALL/INT $80 IRET

Figure 4.1: System call redirection for libLinux. In the normal case (the first instruction of main()),
malloc() internally invokes mmap(), which is redirected to syscalldb() in libLinux.libLinux then
invokes a PAL call, VirtMemAlloc(), to allocate host memory. The second instruction of main()

invokes a direct system call, which is trapped by the host-level exception handler, and returned to
IllegalInstrHandler() in libLinux.

libLinux needs support from a host OS to restrict direct system calls from an application.

A Linux kernel allows an application to install a system call filter in the Berkeley Packet Filter

(BPF) format, called a seccomp filter [147]. A seccomp filter can block or forward a system call

based on the system call number, argument values, or the code address that invokes the system call.

Graphene relies on the hosts to install a system call filter or enforce an architectural restriction to

detect direct system calls. For example, an SGX enclave restricts an application to invoke any

system call by triggering an “illegal instruction” exception. If the host detects a direct system

call, the PAL delivers an exception to the handler assigned by libLinux. The exception handler

can recover the system call number and arguments from the context saved at the system call, and

forward the system call to the system call handler inside libLinux.

Using exceptions to forward direct system call is much slower than redirecting through

a modified libc, due to the overhead of switching context between the application and the host

kernel. When handling an exception, the application at least switches context twice, including

both triggering the exception handler and returning to the original execution. A mitigation for the
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overhead is to rewrite the hard-coded SYSCALL or INT $80 inside each application binary during

the loading. libLinux can also passively replace the instructions whenever the host detects a

direct system call and triggers an exception handler. Graphene leaves system call interception by

binary rewriting as a future feature to explore in libLinux.

4.2 Resource Management

libLinux depends on a host OS or hypervisor to manage hardware and privileged OS resources.

The PAL ABI defines the abstractions managed by a host—from an I/O stream, a virtual mem-

ory area (VMAs), to a thread. These abstractions encapsulate the ubiquitously-installed hardware

resources. Other host abstractions, such as an RPC stream, represents the low-level, privileged re-

sources of a host OS. Graphene drops the prerequisite of virtualizing any other low-level resources

to run libLinux as a ubiquitous compatibility layer.

libLinux’s role in resource management is to allocate host abstractions as requests for

host-managed resources. For instance, libLinux allocates virtual pages using the PAL ABI to

request for physical pages in the host OS. Such a library OS design operates on the faith that

the host OS will assign physical pages to VMAs with both fairness aad efficiency. Unless the

allocation exceeds user quotas or other host-level limitations, the library OS should be allowed to

obtain more host-manged resources, by increasing the allocation of a host abstraction.

A language runtime, such as a Java virtual machine [10, 11, 30], or a Python [20] or

Perl [19] runtime, has a similar role as libLinux. A language runtime commonly uses exist-

ing system APIs to request for resources needed by an application. For example, a language

runtime may use mmap() to allocate a large heap, to assign chunks of the heap to an application.

Therefore, the development of libLinux and the development of a language runtime share several

challenges, including bridging the gap of resource allocation models between the guest and host

and influencing the host OS to assign hardware resources to applications efficiently.

libLinux reproduces the Linux resource allocation models. Take page management for

example. Linux supports several ways of memory allocations, including mmap() for allocating

a fixed-size VMA, stack allocation, and brk() for more fine-grained heap allocation. Since
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libLinux does not directly manage physical pages, it requires different emulation strategies to

implement the allocation models expected by an application. A strategy is to “overallocate” cer-

tain host abstractions. The purpose of overallocation is to keep the flexibility of adjusting the host

resources afterward from the library OS.

The Comparison with Alternative Approaches. Virtualization allows guest OSes to directly

manage hardware resources. A virtual machine often runs an unmodified OS kernel, containing

drivers to manage virtualized or dedicated resources. To fully virtual hardware resources, a hyper-

visor can either emulate a virtual hardware interface, such as QEMU [21], or leverage hardware

virtualization, such as IOMMU [52]. Both virtualization strategies grant a virtual machine with

direct control over hardware resource management.

Exokernel [72] adopts a library OS-like approach to export application-level system APIs,

but grants each application the privilege to directly manage hardware resources. The rationale

behind Exokernel is to bypass the complicated kernel logics for abstracting and multiplexing hard-

ware resources and provide opportunities for domain-based optimization in each application. Ex-

okernel enforces a security binding from machine resources to applications, so that each appli-

cation can manage its own resources using an untrusted library OS. The similarity between the

Exokernel and Graphene approaches is that they both delegate the protection and security isolation

of hardware resources to the host kernel or hypervisor.

Regarding resource management, Exokernel and Graphene have made different decisions

for the division of labor between the host and library OS. Exokernel prioritizes the efficiency of

resource management for each application. To eliminate the overhead of multiplexing resources,

Exokernel exports the low-level hardware primitives, including physical memory, CPU, disks, TLB

and page tables. Each library OS in Exokernel contains drivers to directly interfacing these hard-

ware primitives. Graphene, on the other hand, prioritizes compatibility upon plenty of host OS

and hardware platforms. Compared with the primitives exported by Exokernel, the PAL ABI of

Graphene defines abstractions that are much more high-level and independent from the host OSes,

such as files, virtual memory areas, and network sockets. Graphene sacrifices the application-

specific opportunities for optimizing the resource management, but ensures the compatibility upon

any hosts with the PAL ABI.
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4.2.1 File Systems

This section will discuss the implementation of file systems in libLinux, including a pass-through,

sandboxed file system, the virtual file system layer for abstracting common file system operations,

and other supported file system types.

4.2.1.1 A ‘‘Chroot” File System

A Linux application depends on a list of indispensable resources within a hierarchical, POSIX file

system. A POSIX file system is composed of a number of directories and files, including a root

directory (“/”) as the common ancestor. A POSIX application searches each file or directory in

the file system by describing the path from the root directory to the target. An application either

obtains a canonical or relative path from a user interface or configuration, or hard-codes the path in

one of the application binaries. An application can heavily rely on the existence of specific paths

in a file system, such as /tmp (a default temporary directory) and /bin (a directory for system

programs), as well as the POSIX file system features, such as directory listing and symbolic links.

libLinux creates a consistent, guest file system view containing the file dependencies of an

application. A basic file system type in libLinux is a pass-through, sandboxed file system called a

“chroot (change root)” file system. A chroot file system isolates a directory in the host file system,

and maps such directory to a custom path inside libLinux. The mapping creates a restricted view

for the application to access the files and directories inside the mounted host directory. A chroot

file simply replaces the prefix of each searched path with the URI of the mounted host directory,

and redirects the file operations to the host using the PAL ABI. For an application, each chroot

file system has cherry-picked file resources in a host directory. The host reference monitor ensures

that a chroot file system is sandboxed within the mounted host directory, so that any PAL calls

can only access files and directories under the host directory, similar to a Linux program being

chroot()’ed before running any untrusted execution.

For example, libLinux can mount a host directory “file:/foo” as a chroot file sys-

tem under “/bin” in the guest file system. If the application search a path called “/bin/bash”,

libLinux will translate the path to “file:/foo/bash”, and redirects access of /bin/bash to

PAL calls for accessing file:/foo/bash in the host OS. Moreover, the host reference monitor

enforces policies to prevent the untrusted application to escape the mapped directory, even if the
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application uses “dot-dot” to walk back to last level of directory; for example, libLinux cannot

redirect a path /bin/../etc/passwd to file:/etc/passwd, because file:/etc/passwd does

not belong to the chroot file system mounted at /bin. By mounting a chroot file system, libLinux

creates a sandbox that disguises an unprivileged local directory (i.e., /foo) as a privileged system

directory (i.e., /bin) in an application.

The implementation of common file operations in a chroot file system is mostly as straight-

forward as translating to one or few PAL calls. As previously stated, opening a file in a chroot

file system simply requires calling StreamOpen() with the file URI translated from the requested

path. If the chroot file system successfully opens the file in the host, it associates the returned PAL

handle with a file descriptor, to translate common file system system calls such as pread() and

pwrite() as PAL calls such as StreamRead() ad StreamWrite(), since the PAL ABI defines

these two PAL calls to be positionless. For the more commonly-used read() and write(), the

chroot file system simply tracks the current offset of the file descriptor, and atomically retrieves

and updates the offset in each system call. The batched readv() and writev() is translated to

multiple StreamRead() ad StreamWrite() calls on the same file. Another two common system

calls, stat() and fstat(), which retrieve the metadata of a file or a directory, need only one

more step as translating the returned host-level stream attributes (i.e., STREAM ATTR) to the POSIX

data structure (i.e., struct stat).

The definition of the PAL ABI allows several opportunities of optimizing the latency of

file system system call. Two common techniques being broadly used in libLinux are buffering

and caching. To improve the latency of reading and writing a file, libLinux effectively buffers

the content of multiple read() and write() system calls, until the application calls fsync() or

the file offset exceeds the range of buffering. Buffering file changes potentially delay the timing

of writing the data to physical disks, but libLinux accelerates the process by making the buffer

a pass-through mapping of the file (using StreamMap()). For an application which performs

lots of small, sequential reads or writes, or lots of small, random reads or writes with significant

spatial locality, buffering the data can significantly improve the performance; evaluation shows that

running GCC in Graphene to compile 0.7MLoC, on a Linux host, is only 1% slower than running

on Linux. In terms of caching, libLinux contains a file system directory cache in the virtual file

system, which will aggressively cache any directory information retrieved from the PAL ABI. The
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file system directory cache of libLinux also benefits other file systems, and the details will be

further discussed in Section 4.2.1.3.

A chroot file system enforces container-style sandboxing of an application, but simultane-

ously allows sharing part of the file system tree with other applications and picoprocesses. Since

libLinux supports mounting multiple chroot file systems in a picoprocess, Graphene users can

configure a host to selectively export a few host directories containing the file resources in use.

The security isolation of a single chroot file system is similar to the sandboxing of a Linux con-

tainer [14], which restricts all the file operations of an application within a local file system tree un-

less the container is running on a stackable file system [3]. Graphene allows multiple applications

to share a host directory, either read-only or with full access, and uses a host reference monitor to

enforce AppArmor [37]-like, white-listed rules for isolating every file access. Graphene can share

most of the system files and binaries, such as /etc/hosts and /bin/bash, without compromising

the security isolation of each application.

4.2.1.2 Guest-Level File Systems

Other than a pass-through file system, libLinux can use a different approach as implementing

the file operations in a guest-level file system. A guest-level file system does not expose any

host files and directories to applications; instead, a guest-level file system maintains its own file

system states either in memory or in a raw format unknown by the host OS. A guest-level file

system provides a different option for managing file resources in libLinux. Using a guest-level

file system, libLinux potentially has more control over assigning physical resources to each file

or directory.

One example of a guest-level file system is a pseudo file system, including the proc, sys,

and dev file systems in Linux and similar OSes. A pseudo file system exports an extended system

interface for accessing kernel states or raw devices. An application can use the proc and sys

file systems to obtain information about processes as well as the whole kernel. The proc and

sys file system have both redefined the common file operations such as read(), write(), and

readdir(), for ad-hoc operations of accessing different types of process or kernel states. On

the other hand, the dev file system exports both raw, physical devices and dummy, miscellaneous

devices to an application. Examples of miscellaneous devices include /dev/zero, which outputs
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an infinite zero stream, and /dev/urandom, which outputs software-generated, pseudo-random

bits. libLinux has implemented several critical entries of the proc, sys, and dev file systems,

according to the command-line workloads targeted by Graphene.

Anther guest-level file system implemented in libLinux is a networked file system (NFS),

which connects to a NFSv3 server running on either the local host or a remote machine. A net-

worked file system provides another solution (besides a chroot file system) for libLinux to share

file resources among applications or picoprocesses, by relying on a centralized NFS server to mul-

tiplex the file resources. A benefit of using a networked file system in libLinux is the natural

support of a complete set of POSIX file system features. A networked file system does not depend

on any local file resources, so all the file system features are implemented over a network connec-

tion. Therefore, the implementation of a networked file system is not restricted by the PAL calls

defined for file access. However, the overhead of networking PAL calls can have significant impact

on the performance of a networked file system in libLinux, which can be much slower than an

application-level NFS client on Linux (using libnfs).

Other guest-level file systems can potentially introduce a pre-formatted virtual disk into

libLinux. Several popular file system formats, including EXT2, FAT, and NTFS, have been sup-

ported in either an application-level library (e.g., libext2fs) or a FUSE (Filesystem in userspace)

driver (e.g., NTFS-3G). libLinux can potentially modify these libraries or FUSE drivers as guest-

level file system drivers, to decompose a virtual disk. The drawback of using a pre-formated virtual

disk is the difficulty of coordinating multiple picoprocesses that simultaneously access the same

virtual disk. Since each single write to a file can involves writing to multiple physical blocks (the

superblock, inodes, and data blocks), a guest-level file system driver must consistently coordinate

multiple libLinux instances in order to share a virtual disk. Therefore, without inter-process co-

ordination or a fully-distributed design, the usage of a pre-formated virtual disk in libLinux is

most likely to be restricted to a single-process application.

4.2.1.3 A Virtual File System

A POSIX file system defines a set of generic file system operations and primitives, making the

underlying file system implementations transparent to most applications. An administrator can

mount a file system at an arbitrary directory, to select among different solutions of managing file
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resources. When an application successfully opens a file under the mount point of a file system,

a generic file descriptor is returned to represent the opened file resources and is fully independent

from the underlying implementations. By presenting different resources as a generic primitive as

file descriptors, an application can consistently use identical system calls, such as read() and

write(), to invoke file and directory operations defined by the file system drivers. In a POSIX file

system, an application can mostly be reused upon different file systems, as long as the required file

resources are available in the chosen file systems.

Similar to a Linux kernel, libLinux includes an abstraction layer for exporting the generic

operations and primitives of a POSIX file system, generally known as a virtual file system. A

virtual file system defines a set of file and directory operations as the shared interface of every file

system implementation. When an application opens or queries a target file resource, the virtual

file system searches the file path among all mounted points, and then invokes the corresponding

operations implemented by the file system. In libLinux, each file system, such as a chroot file

system or a pseudo file system, must provide a data structure to the virtual file system, containing

function pointers referencing to all the file and directory operations implemented by the file system.

The virtual file system in libLinux enables several file system features and optimiza-

tions which indistinguishably benefit every file system. A few file operations, such as the batched

readv() and writev(), can be emulated in the virtual file system using the basic file operations

exported by the underlying file system. More importantly, the virtual file system in libLinux

includes a local directory cache, as an optimization to the latency of searching a path in the guest

file system tree, and retrieving file metadata. A directory cache is designed to reduce the frequency

of executing the file operation of walking the file system data structures, by aggressively caching

any directory information and file metadata returned from a file system implementation.

The directory cache in libLinux stores each searched path and its parent directories as

directory entries using the spared picoprocess memory. The directory cache in libLinux has a

similar architecture as the Linux file system directory cache. Each directory entry in the directory

cache records the existence or nonexistence of a file system path, as well as the file attributes (e.g.,

file types, sizes, and permissions). If an application has given a path as a system call argument,

libLinux first looks up in the directory cache to find any directory entries that matches with

the given path. If a directory entry is already created for a path, libLinux can bypass the file
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system operations of querying the paths in the host file systems or other storage media. Since the

directory cache in libLinux only caches paths searched by the local process, libLinux is likely

to need less memory space for directory caching than a Linux kernel. The current implementation

of libLinux never shrinks the directory cache until the picoprocess is terminated. Shrinking or

freeing the directory cache space is a future work to libLinux.

The directory cache in libLinux contains several optimizations for reducing the latency

of file-searching system calls. As one of the optimizations, the directory cache can confirm the

existence of every prefixes of a canonical path by using one PAL call. Since libLinux does not

maintain the mapping between each level of directory and the corresponding inode, libLinux

simply needs to query the existence of each directory. When an application asks for a path and

the path is not yet cached in the directory cache, libLinux only calls StreamAttrQuery() once

to check the existence of the whole path, and uses the result to infer the existence of every parent

directories. For example, if libLinux successfully opens a file at /home/foo/bar, libLinux

knows for sure that both /home and /home/foo exist in the file system. By reducing the amount

of file system lookups for confirming path existence, libLinux reduces the number of PAL calls

for searching in a chroot file system or a guest-level file system.

libLinux also applies several optimization techniques proposed by Tsai et al. [165], to

improve the latency and frequency of cache hits in the directory cache. First, when searching a

path inside the directory cache, libLinux uses an optimized algorithm to look up the canonicalized

path all at once, instead of iteratively searching each path components. The optimized algorithm

speeds up searching /home/foo/bar, from looking up /home, /home/foo, and /home/foo/bar

in the directory cache, to directly searching an universal hash of the whole path. The optimization

is based on the insight that libLinux has delegated the permission checks on each parent directory

to the host OS. Another optimization is to aggressively create negative directory entries for paths

that are known to be non-existent. Whenever an application has unlinked or moved a file, a negative

directory entry can be created inside the directory cache, to prevent future system calls from calling

StreamAttrQuery() to query the existence of the path.
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4.2.2 Network Sockets

libLinux supports three most common types of network sockets: TCP stream sockets, UDP data-

gram sockets, and UNIX-style domain sockets. A TCP or UDP socket is bounded with a host

network interface, such as an Ethernet card or a loopback interface, whereas a domain socket is a

local IPC (inter-process communication) abstraction similar to a FIFO (first-in-first-out) or a pipe.

This thesis argues that other types of network sockets in Linux, such as raw packet sockets, is nor-

mally used by administration-type programs. Most networked applications, including server-side

and client-side applications, tends to treat a network socket as a contiguous I/O stream. Based on

the intuition, the PAL ABI defines a network connection as an I/O stream, which encapsulates the

composition and decomposition of network packets and omits platform-dependent features.

The Graphene architecture makes the network stack strictly a component of the host OS.

The network stack inside an OS contains the implementation of various network protocol suites or

families on top of the network interfaces. A virtualization solution moves or duplicates the network

stack to a guest OS, and allows the guest OS to implement its packet processing mechanisms,

on a physical or virtual network interface. Several Linux network features or APIs assume the

OS owns the network stack, and thus are challenging to implement in libLinux without any

expansion to the PAL ABI. For example, an ioctl() opcode, FIONREAD, returns the number of

bytes currently received on a network socket, including the packets queued inside the network

stack. A use case of recvfrom() also allows an application to “peek” into the top of a network

queue and retrieve the first few packets without draining the network queue. Since libLinux has

no direct access to the network stack inside the host, it sometimes has to prefetch a network stream

and buffer the incoming data inside the picoprocess. However, in normal cases, libLinux can

implement sendto() and recvfrom() by directly passing the user buffers to StreamWrite() and

StreamRead() and prevents the overhead of memory copy between user buffers and libLinux’s

internal buffers.
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4.2.3 Virtual Address Space

A Linux application expects a contiguous, sufficient virtual address space to allocate memory re-

gions for storing code or data. A program usually uses a libc allocator, requested by malloc()

and calloc(), or a heap allocator of a managed language runtime, or reserves space on the cur-

rent stack, to allocate fine-grained memory objects. An OS is responsible of maintaining a unique,

consistent mapping between virtual memory areas (VMAs) and physical pages, and preventing col-

lision of VMAs. The Linux kernel, specifically, provides several ways of allocating pages, such as

allocation by mmap() and brk(), and transparently growing a user stack downward. Applications

depend on different memory allocation mechanisms of a Linux kernel.

libLinux manages the virtual address space of each picoprocess. To emulate a Linux ker-

nel, libLinux creates VMAs using two PAL calls: VirtMemAlloc() for creating an anonymous

memory mapping, and StreamMap() for mapping a file into the virtual address space. Both PAL

calls creates a page-aligned, fixed range in the virtual memory space, with the assumption that

the host OS or hypervisor will assign a physical page to each virtual page being accessed, and

fill the physical page with file content or zeros. libLinux does not assume a host to always im-

plement demand paging. The only assumption that libLinux makes, when VirtMemAlloc() or

StreamMap() returns successfully, is that the the application or libLinux is authorized to access

any part of the created VMA, without causing a segmentation fault or memory protection fault.

It is possible that a host may have statically assign physical pages to the whole VMA instead of

gradually increasing the memory usage.

libLinux creates VMAs for two reasons. First, libLinux allocates memory regions on

applications’ request. libLinux also allocates memory for internal usages, such as maintaining

the bookkeeping of OS states, and reserving space for buffering and caching. libLinux contains

a slab allocator (for internal malloc()) and several object-caching memory allocators. For each

abstraction, libLinux allocates a handle (e.g., a thread handle) using internal allocation functions.

Therefore, the memory overhead of libLinux is primarily caused by allocating various types of

handles for maintaining or caching OS states, and is roughly correlated with the abstractions used

by the application.
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libLinux maintains a list of VMAs allocated by either the application or libLinux itself.

For each VMA, libLinux records the starting address, size, and the page protection (readable,

writable, or executable). The VMA list traces the free space within the current virtual address

space. When an application allocates a VMA, libLinux queries the VMA list to search for a

sufficient space. In another case, an application may specify the mapping address, and the VMA

list can determine whether the address has overlapped with an existing VMA, to prevent corrupting

the internal states of libLinux. According to the new VMA, libLinux uses VirtMemAlloc() or

StreamMap() to create the mapping in the host OS. The VMA list also contains the mappings of

PAL and the libLinux binary.

Whenever an application or glibc invokes a system call like mmap(), mprotect(), or

munmap(), libLinux updates the VMA list to reflect the virtual address space layout created

by the host. The basic design of a VMA list is a sorted, double-linked list of unique address

ranges. Because Linux allows arbitrary allocation, protection, and deallocation at page granularity,

libLinux often has to shrink or divide a VMA into smaller regions. libLinux tries to synchronize

the virtual address space layout with the host OS, by tracing each memory allocation.

Different from a Linux kernel, libLinux does not isolate its internal states from the ap-

plication data. libLinux shares a virtual address space with the application, and allows internal

VMAs to interleave with memory mappings created by the application. In this design, an applica-

tion does not have to context-switch into another virtual address space to enter libLinux. A conse-

quence of the design is the possibility that an application will corrupt the states of libLinux, either

accidentally or intentionally, by simply writing to arbitrary memory addresses. The threat model

of Graphene does not assume libLinux to defend against applications because both libLinux

and applications are untrusted by the host kernel.

Application Data Segments. brk() is a Linux system call for allocating memory space at the

“program break”, which defines the end of the executable’s data segment. What brk() manages is

a contiguous “brk region”, which can be grown or shrunk by an application. Unlike mmap(), brk()

allocates arbitrary-size memory regions, by simply moving the program break and returning the

address to the application. The primary use of brk() in applications is to allocate small, unaligned

memory objects, as a simple way of implementing malloc()-like behaviors.
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libLinux implements brk() by dedicating a part of the virtual address space for the brk

region. During the initialization, libLinux reserves an unpopulated memory space behind the

executable’s data segment, using VirtMemAlloc(). The size reserved for the brk region is de-

termined by user configurations. libLinux adjusts the end of the brk region within the reserved

space whenever the application calls brk(), or sbrk(), a libc function which internally calls

brk(). libLinux reserves the space for brk() to guarantee certain amount of memory resources

for all the brk() calls, until the whole picoprocess is under memory pressure.

Address Space Layout Randomization (ASLR). libLinux implements Address Space Layout

Randomization (ASLR) as a library OS feature. Linux randomizes the address space layout to de-

feat or at least delay a remote memory attack, such as a buffer overflow or a ROP (return-oriented

programming) attack. A remote memory attack often depends on certain level of knowledge about

the virtual address space layout of an application. For example, in order to launch an effective

buffer overflow, an attacker tries to corrupt an on-stack pointer to make it points to security-

sensitive data. With ASLR, a Linux kernel increases the unpredictability of memory mappings, so

that a remote attacker is harder to pinpoint a memory target. To support ASLR, libLinux adds a

random factor to the procedure of determining the addresses for allocating new VMAs. libLinux

randomizes the results of both mmap() and brk(); for brk(), libLinux creates a random gap (up

to 32MB) between the data segment and the brk region.

4.2.4 Threads

Linux application developers usually use the POSIX threads, or pthreads to program multi-threaded

applications. The pthread library, or libpthread, is a user-space abstraction layer which creates

schedulable tasks inside a Linux kernel or other OS kernel. Each pthread maps to a kernel thread

and libpthread maintains a descriptor (pthread t) of each pthread, for signaling a pthread or

blocking for the termination of a pthread. Moreover, libpthreadcontains several scheduling or

synchronization primitives, such as mutexes, conditional variables, and barriers.

The creation of a pthread in libpthread uses clone() system call. When clone() is

used to create a new thread, the application or libpthread assigns a preallocated space as the

stack of the new thread, and a user function to start the thread execution. libLinux implement
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thread creation of clone() by calling ThreadCreate() in the PAL ABI. ThreadCreate() will

start a new thread from a piece of trampoline code inside libLinux, which switches the stack

pointer and jumps to the user function assigned as the starting function.

For each pthread, libpthread allocates a unique thread-local storage (TLS), which con-

tains a thread control block and thread-private variables. A thread control block stores the private

states of a pthread, including at least a thread identifier, followed by thread-private variables (vari-

ables defined with the thread keyword) of the application and libraries. Both the thread control

block and thread-private variables are accessed by directly reading or writing at a specific offset

from the FS segment register. Since accessing FS segment register is a privileged operation, an

application can only set the TLS address by calling the arch prctl() system call or passing the

address as an argument to clone(). libLinux uses SegmentRegisterSet() in the host ABI to

set the FS segment register in arch prctl() and clone().

Besides thread creation, libpthread also provides a collection of synchronization prim-

itives, including mutexes, read-write locks, conditional variables, and barriers. libpthread im-

plements all these synchronization primitives based on futexes (accessed by Linux’s futex() sys-

tem call). A futex is a blocking and notification mechanism supported by a Linux kernel. The

primary types of operations on a futex: waiting (FUTEX WAIT) and signaling (FUTEX WAKE). The

FUTEX WAIT operation blocks a thread until another thread updates a memory address and signals

the blocking thread. The FUTEX WAKE operation then allows a thread to signal one or multiple

threads blocking for the memory update. Futexes provide a basic locking mechanism by combin-

ing two operations: checking a variable, and blocking until another thread updates the variable.

Frank et al., 2002 [75] have shown the versatility of futexes in implementing user-level synchro-

nization primitives. The same technique drives the implementation of synchronization primitives

in libpthread.

For each futex, libLinux creates an event handle using SynchronizationEventCreate()

in the PAL ABI. Whenever a futex() call checks a new word-aligned memory address for block-

ing, libLinux creates a host event and a wait queue to be mapped to the memory address. While a

waiting futex() call blocks on a host event, another signaling futex() call can wake up as many

blocking threads in the wait queue as it wants, using EventSet().
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4.3 Multi-Process Applications

This section explains an implementation of the process creation mechanisms in libLinux, includ-

ing fork() and execve().

4.3.1 Forking a Process

Implementing the UNIX-style, copy-on-write forking presents a particular challenge to Graphene.

ProcessCreate() in the PAL ABI creates a new process in a “clean” state, with an individual

libLinux instance maintaining the OS resources and features for an application process. Forking

a process involves cloning the state of running application and migrating all the resource handles

inside libLinux, such as file descriptors, to the new process. Graphene drops the assumption

that each of its hosts can share physical pages between multiple applications or processes. Since

libLinux cannot enable copy-on-write sharing between picoprocesses, libLinux needs an elab-

orate but efficient scheme for emulating the UNIX-style forking.

Without host support of copy-on-write sharing, libLinux emulates fork() by checkpoint-

ing and migrating the process states. When an application forks a process, the current libLinux

instance holds a list of process resources to copy to the new process. By checkpointing the process

states, libLinux creates a snapshot of the current process, which is expected to the initial state of

the new process, except a few minor changes. A process snapshot includes all allocated resources,

such as VMA and file handles, and miscellaneous process states, such as signal handlers. After

checkpointing, libLinux calls ProcessCreate() to create a new picoprocess in the host, and

then migrates the process snapshot over the process handle as an RPC stream.

To fully emulate fork(), libLinux implements a checkpointing and migration scheme for

duplicating the resource handles and application states between picoprocesses. For each type of

resources, libLinux defines a function for decomposing a resource handle in a migratable form,

and a function for reconstructing the resource handle inside another picoprocess. For example, for

a VMA handle, libLinux checkpoints the address, size, initial flags, and page protection, and only

if the VMA is accessed by the application and not backed by a file, libLinux copies the memory

data into the snapshot. For a file or network handle, libLinux runs a virtual file system operation,
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vfs checkout(), to externalize the related states inside the file system implementations, but skip

any temporary states such as buffers and directory cache entries. Finally, libLinux checkpoints

the current thread handle, but modifies the handle snapshot with a new process ID.

The checkpointing and migration scheme of libLinux is comparable to VM migration by

a hypervisor. When migrating a VM, a hypervisor has to copy the VM’s guest physical memory

to another host machine. A useful feature of a hypervisor is to migrate a live VM, and to imple-

ment the feature, the hypervisor needs hardware support for marking the dirty pages when it is

copying the pages. Graphene also implements live migration of a picoprocess for fork() because

of the general expectation that fork() should not halt the whole process. However, unlike live

VM migration, Graphene chooses not copy the whole virtual address space of a picoprocess for

three primary reasons. First, a checkpointing scheme that snapshots the whole picoprocess cannot

differentiate temporary and permanent states inside a library OS. To improve I/O performance,

libLinux tends to reserve virtual memory for caching and buffering, and libLinux can reduce

migration time by skipping temporary states such as directory cache entries and I/O buffers. Sec-

ond, by checkpointing handles individually, libLinux overwrites each handle and sanitizes sensi-

tive states before sending the snapshot out to another picoprocess. Finally, the PAL ABI does not

export any functionality for tracking the dirty pages during live migration, because the low-level

hardware support needed is not available on a more restricted hardware like Intel SGX. For all the

reasons above, libLinux only selectively checkpoints library OS states rather than snapshotting

the whole picoprocess.

Migrating process states over an RPC stream adds a significant overhead to the latency of

fork() in libLinux. To reduce the overhead, Graphene introduces a bulk IPC mechanism in the

PAL ABI, to send large chunks of memory across picoprocesses. Using the bulk IPC mechanism,

the sender (i.e., the parent) can request the host kernel to preserve the physical pages of application

memory and snapshot data, and the receiver (i.e., the child) can map these physical pages to its own

virtual address space. This bulk IPC mechanism is an efficiency way of sending pages out-of-band,

while the parent process still uses a RPC stream to send control messages including the parameters

of bulk IPC. Although the implementation is up to the host kernel, the bulk IPC mechanism should

map the same physical pages in both parent and child, to minimize the memory copy in the host

kernel. The host kernel marks the physical pages copy-on-write in both picoprocesses, to ensure
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that the child receives a snapshot of the sent pages from the parent without sharing any future

changes. The bulk IPC mechanism is optional in the PAL ABI, and libLinux can always fall back

to sending process snapshots over RPC streams when the host fails to support bulk IPC.

Inheriting PAL Handles. When a file handle to the child, libLinux sometimes needs to send

the stored PAL handle, especially when the file handle represents a network socket or a deleted file.

libLinux normally nullifies the PAL handle in the snapshot of a file handle since the PAL handle

is only valid for the local PAL. However, if libLinux cannot recreate a PAL handle by calling

StreamOpen() in the child picoprocess, libLinux needs host support to inherit the PAL handle

from the parent. There are generally two conditions when the child process cannot recreate a PAL

handle. First, a picoprocess cannot reopen a bounded network handle if another picoprocess still

holds the local port. Second, the parent process may delete a file while holding a file descriptor to

access the file content, generally as a way of detaching the file from the file system. If the file is

deleted in the host file system, the child process cannot reopen the file using StreamOpen().

libLinux uses two new PAL calls, RPCSendHandle() and RPCRecvHandle(), to send

PAL handles out-of-band over a PRC stream. As libLinux walks through a file handle list for

checkpointing, it marks the PAL handles that are network sockets or deleted files. If the parent

deletes a file after migrating the file handle but before the child recreates the PAL handle, the child

will either fail to reopen the file or accidentally open another file created afterward. libLinux can

detect this corner case by coordinating the file system states across picoprocesses.

4.3.2 Process Creation with Executables

Another Linux system call, execve(), creates a process with a separate executable and a clean

memory state. The specification of execve() includes detaching the calling thread from a process

and moving it to a brand-new virtual address space with the specified executable. As a common

use case, a shell program (e.g., Bash) calls execve() after creating a thread using vfork(), to

execute a shell command (e.g., ls) in a separate process, while the main process continues and

waits for the shell command to finish. Linux uses the combination of vfork() and execve() as

an equivalent of spawn() in the POSIX API, or CreateProcess() in the Windows API.
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libLinux implements execve() by calling ProcessCreate() with the host URI of the

executable, and selectively migrating process states to the new picoprocess. When the application

calls execve() to run an executable, libLinux first has to identify the executable on the chroot

file systems, to determine its host URI for creating a picoprocess. Although ProcessCreate()

achieves the goal of creating a clean process with the target executable, execve() further speci-

fies that the child must inherit the parent’s credentials and file descriptors, except file descriptors

opened with a CLOEXEC flag. libLinux uses the same checkpoint and migration scheme in fork()

to selectively migrate handles and library OS states in execve(). The states migrated in execve()

include the caller’s thread handle, all the non-CLOEXEC file handles, program arguments and envi-

ronment variables given by the application, and global OS states shared across libLinux instances

(e.g., namespace information).

4.4 Coordinating Guest OS States

A multi-process application executes on Graphene with the abstraction that all of its processes runs

on a single OS. Each libLinux instance services system calls from its local state whenever possi-

ble. However, whenever a libLinux instance must share a library OS state with other instances,

libLinux has to coordinate the state across picoprocesses via an RPC stream. Within a sandbox,

multiple picoprocesses can securely coordinate shared states of multi-process abstractions, includ-

ing process IDs, exit notification and signaling, System V IPC mechanisms (message queues and

semaphores), shared file system states, and shared file descriptor states (Table 4.1). libLinux

contains a coordination framework with several building blocks for implementing a shared multi-

process abstraction.

As an example of balancing security isolation and coordination APIs, consider function-

ality that accesses the process ID namespace, such as UNIX signaling or exit notification (e.g.,

waitpid()). In Graphene, the process ID namespace, as well as signaling and related system

calls, are implemented inside libLinux. A process can signal itself by having the library OS

directly call the handler function. When picoprocesses are in the same sandbox, they coordinate

to implement a consistent, shared process ID namespace, as well as to send and receive signals
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Abstraction Shared State Coordination Strategy
Fork PID namespace Batch allocations of PIDs, children generally created using local

state at parent.
Signaling PID mapping Local signals call handler; remote signal delivery by RPC. Cache

mapping of PID to picoprocess ID.
Exit notification Process status Exiting processes issue an RPC, or one synthesized if child be-

comes unavailable. The wait system call blocks until notifica-
tion received by IPC helper.

/proc/[pid] Process metadata Read over RPC.
Message Queues Key mapping

Queued messages
Mappings managed by a leader, contents stored in various pico-
processes. When possible, send messages asynchronously, and
migrate queues to the consumer.

Semaphores Key mapping
Semaphore count

Mappings managed by leader, migrate ownership to picoprocess
most frequently acquiring the semaphore.

File System File truncate sizes
Deleted files
FIFO & domain
sockets

No coordination; completely relying on the PAL ABI; creating
special files in the host to represent symbolic links.

Shared File
Descriptors

Seek pointers Mappings managed by parent, migrate ownership to picoprocess
most frequently accessing the file descriptors.

Table 4.1: Multi-process abstractions implemented in Graphene, coordinated state, and implementation
strategies.

amongst themselves. libLinux implements inter-process signaling using RPC messaging. When

picoprocesses are in separate sandboxes, they do not share a PID namespace, and cannot send sig-

nals to each other. The reference monitor ensures that IPC abstractions, such as signaling, cannot

escape a sandbox by preventing the creation of kernel-level streams across sandboxes.

A driving design insight is that the common case for coordination is among pairs of pro-

cesses. Examples include a parent waiting for a child to exit, one process signaling another, or

a single producer and single consumer sharing a message queue. Thus, Graphene optimizes for

the common case of pairwise coordination, reducing the overhead of replicating data (see Sec-

tion 4.4.3).

Although a straightforward implementation worked, tuning the performance was the most

challenging aspect of the coordination framework. This section summarizes the lessons learned

during the development of Graphene, from optimizing the coordination of various multi-process

abstractions. This section then presents the design and driving insights of the coordination frame-

work, followed by representative examples and a discussion of failure recovery.

67



4.4.1 Building Blocks

The general problem underlying each of the coordinated library OS states is the coordination

of namespaces. In other words, coordination between processes needs a consistent mapping of

names, such as process IDs or System V IPC resource keys, to the picoprocess implementing that

particular item. Because many multi-process abstractions in Linux can also be used by single-

process applications, a key design goal is to seamlessly transition between single-process cases,

serviced entirely from local library OS state, and multi-process cases, which coordinate shared

abstractions over RPC.

libLinux creates an IPC helper thread within each picoprocess to respond to coordination

messages from other picoprocesses. An IPC helper maintains a list of point-to-point RPC streams,

and indefinitely waits for incoming messages. For each multi-process abstractions coordinated

over RPC, libLinux defines a protocol for formatting the header of each message and determining

the callback function for processing the message. GNU Hurd [76] has a similar helper thread to

implement signaling among a process’s parent and immediate children; Graphene generalizes this

design to share a broader range of multi-process abstractions among any picoprocesses. An IPC

helper serves remote messages and receive responses atomically, and is created in each picoprocess

after the application spawned its first child process. For avoiding deadlock among application

threads and the IPC helper thread, an application thread may not both hold locks required by the

helper thread to service an RPC request and block on an RPC response from another picoprocess.

All RPC requests are handled from local state and do not issue recursive RPC messages.

Within a sandbox, all IPC helper threads exchange messages using a combination of a

broadcast stream for global coordination, and point-to-point RPC streams for pairwise inter-

actions, minimizing overhead for unrelated operations. A PAL creates the broadcast stream the

process as part of initialization. Unlike other byte-granularity streams, the broadcast stream sends

data at the granularity of messages, to simplify the handling of concurrent writes to the stream.

Point-to-point RPC streams include the streams between parent and child processes established

during ProcessCreate(), and RPC streams created through connecting to an RPC server identi-

fied by its URI. Because of the security isolation in the host, only processes in the same sandbox

can connect to each other through RPC. If a process leaves a sandbox to create a new one, its broad-
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cast stream is shutdown and replaced with a new one, connected only between a parent process and

any children created in the new sandbox.

Because message exchange over the broadcast stream does not scale well, we reduce the

use of the broadcast stream to the minimum. One occasion of using the broadcast stream is pro-

cess ID allocation. Because each process needs an unique ID to be recognized as a source or a

destination of RPC messages, libLinux generates a random number as the ID of each process and

confirms use the broadcast stream to confirm uniqueness. Another occasion of using the broadcast

stream is leader recovery, which happens when a namespace leader unexpectedly crashes during

coordination. For the implementation of leader recovery, see Section 4.4.2.

For each namespace (e.g., process IDs, System V IPC resource keys), libLinux elects

one of the processes in a sandbox to serves as the leader. A leader is responsible for managing

and memorizing the allocation of identifiers or resources in a namespace, in behave of all other

processes. For a namespace like the process ID namespace, the leader subdivides the namespace

for each process to reduce the RPC cost of allocation. For example, the leader might allocate 50

process IDs to a process which intends to clone a new thread or process. The process who receives

50 process IDs becomes the owner, and can further assign the process IDs to children without

involving the leader. For a given identifier, the owner is the serialization point for all updates,

ensuring serializability and consistency for that resource.

4.4.2 Examples and Discussion

Signals and Exit Notification. libLinux implements signals in various ways according to the

causes of signals. For signals triggered by hardware exceptions (e.g., SIGSEGV), libLinux uses

the hardware exception upcalls in the PAL ABI. If a signal is sent from one of the processes

for IPC purposes (e.g., SIGUSR1), libLinux exchanges RPC messages between picoprocesses to

deliver the signal to the destination picoprocess. If a process signals itself, libLinux interrupts

the targeted threads inside the process and uses internal data structures to call the appropriate user

signal handler. libLinux implements all three of Linux’s signaling namespaces: process, process

group, and thread IDs. If a signal is sent to a process or a process group, every thread within the
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Figure 4.2: Two pairs of Graphene picoprocesses in different sandboxes coordinate signaling and process
ID management. The location of each PID is tracked in libLinux; Picoprocess 1 signals picoprocess 2 by
sending a signal RPC over stream 1, and the signal is ultimately delivered using a library implementation of
the sigaction interface. Picoprocess 4 waits on an exitnotify RPC from picoprocess 3 over stream 2.

process or the process group receives a copy of the signal, even if the threads belong to different

picoprocesses.

Linux also delivers exit notifications as signals. When a process exits, normally a SIGCHLD

signal is delivered from the child process to its parent, to unblock the parent who might be waiting

for exit notification using wait() or waitpid(). libLinux exchanges exit notifications between

parent and child picoprocesses over RPC streams.

Figure 4.2 illustrates two sandboxes with picoprocesses collaborating to implement sig-

naling and exit notification within their own process ID (PID) namespaces. Because process IDs

and signals are library OS abstractions, picoprocesses in each sandbox can have overlapping pro-

cess IDs, and cannot signal each other. The host reference monitor ensures that picoprocesses in

different sandboxes cannot exchange RPC messages or otherwise communicate.

If picoprocess 1 (PID 1) sends a SIGUSR1 to picoprocess 2 (PID 2), illustrated in Figure 4.2,

a kill() call to libLinux will check its cached mapping of PIDs to point-to-point streams. If

libLinux cannot find a mapping, it may begin by sending a query to the leader to find the owner of

PID 2, and then establish a coordination stream to picoprocess 2. Once this stream is established,

picoprocess 1 can send a signal RPC to picoprocess 2 (PID 2). When picoprocess 2 receives this

RPC, libLinux will then query its local sigaction structure and mark SIGUSR1 as pending. The
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next time picoprocess 2 calls kill(), the SIGUSR1 handler will be called upon return. Also in

Figure 4.2, picoprocess 4 (PID 2) waits on picoprocess 3 termination (in the same sandbox with

PID 1). When picoprocess 3 terminates, it invokes the library implementation of exit, which issues

an exitnotify RPC to picoprocess 4.

The signaling semantics of libLinux closely match the Linux behavior, which delivers

signals upon returning from a system call or an exception handler. Each process and thread have

sigaction structures from the Linux source that implement the POSIX specification, including

handler functions, as well as masking signals and reentrant behavior. libLinux does not modify

libc’s signal handling code. If an application has a signal pending for too long, e.g., the application

is in a CPU-intensive loop, libLinux can use ThreadInterrupt() to interrupt the thread.

System V IPC. System V IPC maps an application-specified key onto a unique identifier. All

System V IPC abstractions, including message queues and semaphores, are then referenced by a

resource ID, which is arbitrarily allocated. Similar to process IDs, the leader divides the names-

pace of resource IDs among the processes, so that any process can allocate a resource ID from

local state instead of involving the leader. Unlike the resource IDs, System V IPC keys must be

centrally managed by the leader, since an application might autonomously assign System V IPC

keys to its processes. Global coordination is required to ensure that the same key maps to the

same resource ID; the leader caches this information, but the owner of the resource ID makes the

definitive decision about whether an ID mapping is still valid. A key which does not have a valid

mapping can be assigned to a resource ID by any process to allocate a private IPC resource.

System V IPC Message Queues. In Graphene, the owner of a queue ID is responsible for storing

the messages written to a System V IPC message queue. To ensure the serializability and consis-

tency of all messages, delivery and reception of messages must go via a central owner. In the initial

implementation of libLinux, sending or receiving messages remotely over an RPC stream orders

of magnitude slower than accessing a local message queue. This observation led to two essential

optimizations. First, sending to a remote message queue was made asynchronous. In the common

case, the sender can simply assume the send succeeded, as the existence and location of the queue

have already been determined. The only risk of failure arises when another process deletes the

queue. When a queue is deleted, the owner sends a deletion notification to all other picoprocesses
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that previously accessed the queue. If a pending message was sent concurrently with the deletion

notification (i.e., there is an application-level race condition), the message is treated as if it were

sent after the deletion and thus dropped. The second optimization migrates queue ownership from

the producer to the consumer, which must read queue contents synchronously.

Because non-concurrent processes can share a message queue, our implementation also

uses a common file naming scheme to serialize message queues to disk. If a picoprocess which

owns a message queue exits, any pending messages are serialized to a file in the host, and the

receiving process may regain the ownership of the message queue later from the leader and recover

the serialized messages.

System V IPC Semaphores. System V IPC semaphores follow a similar pattern to message

queues. Each semaphore is owned by a picoprocess; a semaphore can be directly accessed by its

owner as a local state, whereas other picoprocesses all have to access the semaphore through the

owner over RPC. Since a semaphore shares the same performance pattern as a message queue,

libLinux applies the same optimization of migrating the ownership of a semaphore to the pico-

process that most frequently acquires the semaphore. Another optimization of message queues,

by making the updates asynchronous, does not apply to semaphores, because a participating pico-

process cannot proceed before successfully acquiring the semaphore. Most of the overhead in the

Apache benchmark (see Section 7.3) is attributable to semaphore overheads.

Shared File Descriptors. The seek pointer of each file descriptor is implemented as a library

OS abstraction; when reading or writing to a host file, the PAL ABI always obtains an absolute

pointer from the beginning of the file. Although most applications do not share the seek pointer

of an inherited file descriptor among processes, the clone system call can can be called with the

CLONE FILES flag and create a process which shares the whole file descriptor table with its parent.

To share a file descriptor table among picoprocesses, one of picoprocesses (usually the oldest one)

must be the leader of the file descriptor table to manage all mappings from file descriptors to the

child picoprocess who owns the state of the file descriptors including the seek pointers. Every

updates to a seek pointer must goes through the owner of the file descriptor (not the leader). The

migration-based optimization for System V IPC message queues and semaphores is also effective

for optimizing the performance of shared file descriptors.
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Shared File System States. A chroot file system in libLinux is restricted by the PAL ABI to

externalize any file system states. Other shared file system states are implemented as library OS

abstractions, and have to be coordinated among picoprocesses. For example, a POSIX file system

can contain special files such as a FIFO (first-in-first-out); a path bound to a UNIX domain socket;

a symbolic link; or a file system lock. Implementation of these special files cannot completely

depend on the PAL ABI, since the PAL ABI only supports regular files and directories.

A simple approach to coordinating file system states is to share a “dummy” host file. For

example, libLinux can store the target of a symbolic link in a regular file on the chroot file system.

For a FIFO, a bounded UNIX domain socket, or a file system lock, libLinux can store a mapping

to the corresponding RPC stream, or to the picoprocess which owns the abstraction. By using the

host file system as a less efficient but permanent coordination medium, libLinux can extend the

coordination framework for sharing file system states.

Shared Memory. The Graphene architecture does not currently permit shared memory among

picoprocesses. This thesis expects that an extra PAL call and the existing support for System V

IPC coordination would be sufficient to implement this, with the caveat that the host must be able

to handle sandbox disconnection gracefully, perhaps converting the pages to copy-on-write. Thus

far Graphene have avoided the use of shared memory in libLinux, both to maximize flexibility

in placement of picoprocesses, potentially on an unconventional host (e.g., Intel SGX) or different

physical machines. and to keep all coordination requests explicit. Shared memory may be useful

to reduce latency for RPC messaging across picoprocesses on the same host.

Failure and Disconnection Tolerance. libLinux must tolerate disconnection between collab-

orating picoprocesses, either because of crashes or blocked RPC streams. In general, libLinux

makes these disconnections isomorphic to a reasonable application behavior, although there may

be some edge cases that cannot be made completely transparent to the application.

In the absence of crash recovery, placing shared state in a given picoprocess introduces

the risk that an errant application will corrupt shared library OS state. The microkernel approach

of moving all shared state into a separate server process is more resilient to this problem. Anec-

dotally, libLinux’s performance optimization of migrating ownership to the process that most

heavily uses a given shared abstraction also improves the likelihood that only the corrupted pro-
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cess will be affected. Making each libLinux instance resilient to arbitrary memory corruption of

any picoprocess is left for future work.

Leader Recovery. libLinux provides a leadership recovery mechanism when a leader failure

is detected. A non-leader picoprocess can detect the failure of a leader by either observing the

shutdown of RPC streams or timing out on waiting for responses. Once the picoprocess detects

leader failure, libLinux sends out a message on the broadcast stream to volunteer for claiming the

leadership. After a few rounds of competition, the winning picoprocess becomes the new leader

and recover the namespace state by reading a namespace snapshot stored before the crash of the

former leader or recollecting from other picoprocesses in the same sandbox.

When a picoprocess is moved to a new sandbox, libLinux will naturally detect the failure

of leader because of blocked RPC. The sandboxed picoprocess will be the only candidate for lead-

ership because the host has replaced the broadcast stream; as a result, the sandboxed picoprocess

seamlessly transitions to new namespaces isolated from the previous sandbox.

4.4.3 Lessons Learned

The current coordination design is the product of several iterations, which began with a fairly

simple RPC-based implementation. This subsection summarizes the design principles that have

emerged from this process.

Service Requests From Local State Whenever Possible. Sending RPC messages over Linux

pipes is expensive; this is unsurprising, given the long history of work on reducing IPC overhead

in microkernels [56, 113]. Running on a microkernel can improve the performance of Graphene

with a more optimized IPC substrate [71, 101, 114]. Currently, Graphene takes a complementary

approach of avoiding IPC if possible.

An example of this principle is migrating message queues to the “consumer” when a clear

producer/consumer pattern is detected, or migrating semaphores to the most frequent requester. In

these situations, synchronous RPC requests can be replaced with local function calls, improving

performance substantially. For instance, migrating ownership of message queues reduced overhead

for messaging by a factor of 10×.
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Lazy Discovery and Caching Improve Performance. No library OS keeps a complete replica

of all distributed state, avoiding substantial overheads to pass messages replicating irrelevant state.

Instead, Graphene incurs the overhead of discovering the owner of a name on the first use, and

amortizes this cost over subsequent uses. Part of this overhead is potentially establishing a point-

to-point stream, which can then be cached for subsequent use. For instance, the first time a process

sends a signal, the helper thread must figure out whether the process id exists, to which process it

maps, and establish a point-to-point stream to the process. If they exchange a second signal, the

mapping is cached and reused, amortizing this setup cost. For instance, the first signal a process

sends to a new processes takes ∼2ms, but subsequent signals take only ∼55 µS.

Batched Allocation of Names Minimizes Leader Workload. To keep the leader off of the

critical path of operations like fork, the leader typically allocates larger blocks of names, such as

process IDs or System V queue IDs. In the case of fork(), if a picoprocess creates a child, it will

request a batch of PIDs from the leader. Subsequent child PID allocations will be made from the

same batch without consulting the leader. Collaborating processes also cache the owner of a range

of PIDs, avoiding leader queries for adjacent queries.

Prioritize Pairwise Coordination Within a Sandbox. Graphene optimizes the common case

of pairwise coordination, by authorizing one side of the coordination to dictate the abstraction

state, but also allows more than two processes to share an abstraction. Based on this insight, we

observe that not all shared state need be replicated by all picoprocesses. Instead, we adopt a design

where one picoprocess is authoritative for a given name (e.g., a process ID or a System V queue

ID). For instance, all possible thread IDs are divided among the collaborating picoprocesses, and

the authoritative picoprocess either responds to RPC requests for this thread ID (e.g., a signal) or

indicates that the thread does not exist. This trade does make commands like “ps” slower, but

optimizes more common patterns, such as waiting for a child to exit.

Make RPCs Asynchronous Whenever Possible. For operations that must write to state in an-

other picoprocess, the Graphene design strives to cache enough information in the sender to eval-

uate whether the operation will succeed, thereby obviating the need to block on the response. This

principle is applied to lower the overheads of sending messages to a remote queue.
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Summary. The current Graphene design minimizes the use of RPC, avoiding heavy communi-

cation overheads in the common case. This design also allows for substantial flexibility to dynami-

cally moving processes out of a sandbox. Finally, applications do not need to select different library

OSes a priori based on whether they are multi-process or single-process—Graphene automatically

uses optimal single-process code until otherwise required.

4.5 Summary

This chapter demonstrates the implementation of a library OS, or libLinux, with a rich of Linux

APIs and abstractions. Using the PAL ABI, libLinux faithfully reproduces the behavior of a

Linux kernel, for both single-process and multi-process applications. In each process of an appli-

cation, a libLinux instance serves as an intermediate layer between the application and the host,

to manage and allocate host abstractions for a wide range of library OS abstractions. This thesis

argues for the sufficiency of Linux APIs and abstractions supported by libLinux, based on the

types of applications that are more likely to be ported across host platforms and the abstractions

that these applications depend on.

libLinux achieves three goals. First, libLinux satisfies several resource management

models and requirement, without duplicating or virtualizing the low-level components from the

host OS or hypervisor. Although the PAL ABI has encapsulated the host resources, such as pages,

CPUs, and I/O devices, libLinux introduces reasonable emulation and buffering to achieve the

resource management model expected by the applications. Second, libLinux extends single-

process abstractions to multiple libLinux instances collaborating to present a single OS view.

To maximize the flexibility of placing the picoprocesses on different hosts, libLinux builds a

coordination framework upon RPC messaging instead of shared memory. Third, libLinux iden-

tifies the performance overheads caused by coordinating over RPCs and designs several strategies

foroptimizing the coordination framework based on lessons learned in Graphene.
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Chapter 5

The Linux Host

This chapter uses Linux as an example to illustrate the porting effort of the PAL ABI. The usage

of Graphene on a Linux host has two primary benefits. One benefit is to create a lightweight, VM-

like, guest OS environment for running an application with an isolated view of OS states. The other

benefit is to reduce the host kernel attack surface from an untrusted application, as the number of

vulnerable kernel paths that can be triggered by the application. This chapter first demonstrates the

feasibility of developing a Linux PAL prioritized for minimal Linux system call footprint, followed

by a discussion of security isolation.

5.1 Exporting the Host ABI

The Linux PAL uses an unmodified Linux kernel as the host OS. By default, a Graphene picopro-

cess should run on an off-the-shelf Linux kernel as an unprivileged, normal process, with a PAL

loaded for exporting the PAL ABI. The Linux PAL demonstrates a minimal effort of implement-

ing the PAL ABI on a single host, considering Linux is rich with APIs for programming all sorts

of applications. Only two host-level components require extension or modification of the Linux

kernel: a bulk IPC kernel module and a trusted reference monitor.

On a Linux host, the majority of PAL calls are simply wrappers for similar Linux system

calls, adding on less than 100 LoC on average for each PAL call. The most complex PAL calls

on a Linux host are for exception handling, synchronization, and process creation, and each of

these PAL calls requires multiple system calls and roughly 500–800 LoC in PAL. For example,
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Component Lines (% Changed)
GNU Library C (libc, ld, libdl, libpthread) 398 0.03%
Linux Library OS (libLinux) 33,833
Linux PAL 12,640
SGX PAL (described in Chapter 6) 28,166
Reference monitor bootstrapper 1,446
Linux kernel reference monitor module (/dev/graphene) 1,473
Linux kernel IPC module (/dev/gipc) 943

Table 5.1: Lines of code written or changed to develop the whole Graphene architecture on a Linux hosts.
The application and other dynamically-loaded libraries are unmodified.

process creation (i.e., ProcessCreate()) requires both the vfork() and execve() system calls

for creating a clean application instance and would be more efficiently implemented inside the

Linux kernel. Finally, the other major PAL components are an ELF loader (2 kLoC), Linux kernel

and PAL headers (800 LoC), and internal support code providing functions like malloc() and

memcpy() (2.3 kLoC).

Developing a Linux PAL requires significantly less effort than developing a Linux library

OS (see Table 5.1). About half of the Linux PAL code turns out to be mostly generic to every host

OSes and thus fully reusable for each PAL. The generic parts include the ELF loader, PAL headers,

and internal support code, adding up to ∼6,000 LoC. The other half of the Linux PAL are host-

dependent code containing mainly wrappers for Linux system calls. If the targeted host OS has

exported a UNIX or POSIX-like API, porting the host-dependent code is mostly straightforward.

For example, a follow-up experiment of developing a FreeBSD PAL finds most of the Linux PAL

code to be highly portable.

5.1.1 Implementation Details

The rest of this section will discuss a few PAL ABI abstractions that are particularly challenging on

a Linux host. Similar challenges exist on other host OSes such as FreeBSD, OS X, and Windows.

Bootstrapping a Picoprocess. The Linux PAL works as a run-time loader to the Graphene li-

brary OS (libLinux). First, for the dynamic loading of libLinux, the Linux PAL contains an

ELF loader, similar to the functionality of a libc loader (ld.so), to map the libLinux binary into

a picoprocess and resolve the addresses of PAL calls. Second, the Linux PAL constructs a process
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control block (PCB), providing information about the picoprocess and the host platform. For ex-

ample, a member of the PCB exposes the basic CPU information (e.g., model name and number of

cores) to libLinux, for implementing the cpuinfo entry of the proc file system as a library OS

abstraction. Finally, the Linux PAL populates the stack with program augments and environment

variables passed from the command line and switches to libLinux.

RPC Streams. Three Linux abstractions are candidates for implementing RPC streams: pipes,

UNIX domain socket, and loopback network sockets (bound at 127.0.0.1). Creation of loopback

network sockets is restricted by 65,535 ports which can be used to bind a socket on a network

interface. The initial design of the Linux PAL uses pipes to implement RPC streams, but a later

version switches to UNIX domain sockets. Although both pipes and UNIX domain sockets are

viable options, different performance patterns are expected on these two Linux abstractions. The

general expectation is that a pipe has much lower latency for sending small messages, whereas a

UNIX domain socket has much higher throughput for sending large payloads.

According to a micro-benchmark result of LMbench, on Linux 4.10 kernel, the latencies

of sending one byte over a pipe and a UNIX domain socket are ∼2.2 µS and ∼3.5–4.5 µS, respec-

tively. As for throughput, when sending a 10MB buffer, the bandwidth of a UNIX domain socket

can reach ∼12 GB/s, whereas the bandwidth of a pipe is only ∼5 GB/s (for reference, the band-

width of a loopback network socket is ∼7.5 GB/s) at less than half of the transfer rate of a UNIX

domain socket. Based on the performance patterns described above, the latest design of the Linux

PAL chooses UNIX domain socket for prioritizing the RPC throughput of sending large messages,

particularly for migrating a snapshot of a forking process.

Exception Handling. The Linux PAL can receive hardware exceptions (e.g., memory faults,

illegal instructions, divide-by-zero) from an application, libLinux, or the PAL itself. The Linux

kernel delivers all hardware exceptions to the user space as signals. If an exception is external to

the Linux PAL (from an application or libLinux), the registered signal handler of the Linux PAL

simply calls a guest exception handler assigned by libLinux using ExceptionSetHandler().

The Linux PAL also creates an exception object, either malloc()’ed or allocated from the stack,

to pass the exception type and the interrupted context to the guest exception handler. Otherwise, if

an exception happens internally, the Linux PAL cannot deliver the exception to the guest exception
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handler because libLinux does not know how to recover from the exception (the execution inside

the Linux PAL is transparent to libLinux). Unless an exception happens during the initialization,

it must be triggered inside a PAL call made by libLinux or the application. To recover from an

internal exception, the Linux PAL stores a piece of recovery information on stack at the entry of

each PAL call. The PAL signal handler identifies the internal exception by comparing the faulting

address to the mapping address of the Linux PAL, discovers the recovery information from the

stack, rolls back the PAL call, and returns as a failed PAL call.

The PAL signal handler must avoid further triggering any hardware exceptions from the

handler itself, or it can cause a double fault. Graphene ensures that the signal handler is carefully

developed so that no memory faults or other exceptions can be caused by defects in the handler

code. An unrecoverable case is corruption of a user stack, since the Linux kernel needs to dump

the signal number and interrupted context on the stack before calling the PAL signal handler. The

Linux PAL can avoid this case by assigning an alternative stack, or just kill the picoprocess when

a double fault happens.

Process Creation. On the Linux PAL, a new, clean process can simply be created by calling

vfork() and execve() with the Linux PAL as the executable. Within an application instance,

the procedures for launching the first process and the consecutive ones are mostly identical, except

a consecutive process is launched with a heritage of a global PAL data structure (containing a

Graphene instance ID and a UNIX domain socket prefix), a broadcast stream, and an unnamed

UNIX domain socket as a RPC stream to its parent. The Linux PAL keeps the other stream handles

private to a process by marking the underlying file descriptors as CLOEXEC (close upon execve()).

No page needs to be shared among processes.

A key challenge to implementing process creation in the Linux PAL is to reduce the

overhead of initializing a new process. The elapsed time of process creation—from an existing

libLinux instance calling ProcessCreate() to a new libLinux instance starting to initialize—

contributes a major part of the fork() latency overhead in Graphene. There were several attempts

of optimizing the process creation mechanism in the Linux PAL. The current design leverages

vfork() and execve(), but caches the result of relocating symbols in the Linux PAL loader to

reduce consecutive picoprocess initialization time. A previous design uses fork() to snapshot a
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process with a fully-initialized PAL, and create processes ahead of time. The preforking design

shows higher latency than the current design due to the IPC overhead for coordinating preforked

processes.

Bulk IPC. The Linux PAL provides a gipc kernel module for transferring the physical pages of a

large chunk of memory to another picoprocess. The gipc module exports a miscellaneous device,

/dec/gipc, for committing physical pages from a picoprocess to an in-kernel store and mapping

physical pages copy-on-write in another picoprocess. When gipc receives a request of committing

a range of memory, it pins all the physical pages within the range, updates the page table to mark

the pages copy-on-write, and awaits requests of mapping the pages to another picoprocess. Each

physical page store has a limited number of slots for queuing physical pages, so a picoprocess can

block during committing a range of memory if the physical page store is full.

The bulk IPC abstraction honors the sandbox boundary. An in-kernel physical page store

cannot be shared across sandboxes. Any picoprocesses in a sandbox can access the same physical

page store using an unique store ID; picoprocesses in different sandboxes can use the same store

ID but will open different physical page stores.

5.2 Security Isolation

Graphene separates OS features from security isolation. This section explains the Linux host

design for isolating mutually untrusting applications, with a reduced attack surface for protecting

Linux kernels. The discussion starts with the security guarantees and threat model, followed by

the technical details of security isolation on a Linux host.

5.2.1 Security Models

The security isolation model of Graphene ensures that mutually-untrusting applications cannot

interfere with each other. A goal of Graphene is to provide security isolation with comparable

strength as running applications in separate VMs. When running two unrelated applications on the

same machine, the security requirement of the OS involves not only blocking unauthorized access
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under normal circumstance, but also preventing an application from maliciously exploiting OS

vulnerabilities to attack the other application. Because a modern OS, such as Linux or Windows,

contains a rich of features and APIs, it is difficult to eliminate OS vulnerabilities or even just to

verify whether an OS contains any vulnerabilities. A Linux container [14] does provide a separate

OS view for each application, but still relies on the correctness of the whole Linux kernel to enforce

security isolation. On the other hand, a VM or a library OS isolates the whole OS kernel or a part

of the kernel in an unprivileged guest space for each application. The security isolation model

prevents any vulnerabilities inside the VM or the library OS from compromising the host kernel

and other applications.

Graphene enforces security isolation by separating backward-compatible OS features from

security mechanisms. A Linux kernel exports a wide range of system calls, either as a legacy of

previous kernels or as new programmability features. By implementing OS features in a library

OS, Graphene reduces the attack surface of a Linux kernel to a small amount of system call corner

cases. A reduced attack surface eliminates majority of execution paths inside a Linux kernel in

which a malicious application can explore for vulnerabilities. The complexity of Linux features

and APIs exported by a library OS is unrelated with the attack surface of the host kernel, unless the

library OS asks for additional PAL calls. A Linux developer can even carve out a minimal Linux

kernel with only the features needed by the Linux PAL, similar to shrinking a Linux kernel to a

microkernel. Otherwise, Graphene depends on the host security mechanisms to restrict a library

OS from accessing unauthorized system calls and resources upon an unmodified Linux kernel.

The Linux PAL installs a system call filter and a reference monitor for restricting the

system calls, files, RPC streams, and network addresses accessed by a picoprocess. The Linux

PAL requires 50 system calls in total for implementing both required and optional PAL calls.

A system call filter, such as the Linux seccomp filter [147], can restrict the system call access

of an application to only a small subset of all the system calls, with additional constraints on the

parameters and optional flags permitted for each system call. A reference monitor further examines

the arguments of permitted system calls to restrict the host resources accessed by an application,

based on security policies configured in a manifest file [88]. The system call filter and the reference

monitor significantly limit the ability of an untrusted Graphene picoprocess to interfere with the

rest of the system, preventing the risk of exposing any unknown vulnerabilities on a kernel path
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never exercised by the system call footprint of Graphene.

Graphene contributes a multi-process security model based on a sandbox, or a set of

mutually-trusting picoprocesses running inside an isolated container. The reference monitor per-

mits picoprocesses within the same sandbox to communicate over RPC streams, allowing the li-

brary OS to share and coordinate any states to create an unified OS view. If two picoprocesses

belong to different sandboxes, the reference monitor will block any attempt of connecting RPC

streams between the picoprocesses The access control over RPC streams enforces an all-or-nothing

security isolation model: either two picoprocesses are in the same sandbox and share all the library

OS states; or they are separated in two sandboxes and share nothing. Even though the library OS

instance can span its state across multiple picoprocesses, a host kernel needs not to examine the

accesses to shared library OS states, but still enforces security isolation between sandboxes.

Files and network addresses are the only host resources allowed to be shared across sand-

boxes, using well-studied, explicit rules. For sharing files, the reference monitor restricts the file

access of a picoprocess within a few host file or directories, creating a restricted view of the local

file system (close to Plan 9’s unionized file system views [135]). The file rules in a manifest are

similar to the policies of a AppArmor profile [37]; for each permitted file or directory, a developer

specifies the URI prefix and the permitted access type, either as read-only or readable-writable. For

sharing network addresses, the reference monitor restricts a picoprocess from connecting through

a local address or connecting to a remote address, using iptables-like firewall rules [92]. Each

network rule in a manifest specifies the local or remote IP address and port range that a picoprocess

is permitted to bind or connect a network socket. The rules in a manifest file specify a minimal list

of files and network addresses that a picoprocess needs to access, and are largely based on existing

security policies (e.g., AppArmor profiles, firewall rules).

Threat Model (Details). When running on a normal Linux host (without SGX or other security

hardware), Graphene assumes a trusted host kernel and reference monitor. All the components

inside the kernel space, including the gipc kernel module for bulk IPC, and the reference monitor,

are fully trusted by the other parts of the host kernel and the Graphene picoprocesses. On the other

hand, the host Linux kernel does not trust the picoprocess, including the Linux PAL, a libLinux

instance, glibc, and the application. The system call filter and reference monitor initialized before
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an application starts running defend the whole host kernel from malicious system calls invoked by

a picoprocess.

All the components running within a picoprocess, including the Linux PAL, the library

OS (libLinux), glibc libraries, and the application, mutually trust each other. Without internal

sandboxing, the Linux PAL or libLinux cannot protect its internal states or control flows from

an application. Although some scenarios might require protecting the PAL or libLinux from the

application, Graphene only restricts the adversary within a picoprocess; in other word, an adversary

only compromises the library OS in the same picoprocess, but can never interfere the host kernel

or other unrelated picoprocesses.

For a multi-process application, Graphene assumes that the picoprocesses running inside

the same sandbox trust each other and that all untrusted code run in sandboxed picoprocesses.

Graphene assumes the adversary can run arbitrary code inside one or multiple picoprocesseswithin

a sandbox. The adversary can exploit any vulnerabilities in the library OS or IPC protocol, to

propagate the attack to other picoprocesses. Graphene ensures that the adversary cannot interfere

with any victim picoprocesses in a separate sandbox. A sandbox strictly isolates the coordination

of libLinux instances; the reference monitor ensures that there is no writable intersection between

sandboxes, so that the adversary cannot interfere with any victim picoprocesses.

Graphene reduces the attack surface of the host Linux kernel, but does not change the

trusted computing base; however, reducing the effective system call table size of a picoprocess

does facilitate adoption of a smaller host kernel. This thesis leaves the creation of a smaller host

kernel for future work.

5.2.2 System Call Restriction

Graphene reduces the host ABI to 40 calls and the Linux system call footprint to 50 system calls.

To reduce the effective attack surface to a Linux host, the Linux host restricts a picoprocess from

accessing any system calls that are not part of the ordinary footprint of a Linux PAL. The system

call restriction on Linux focuses on blocking most of the system calls that interfere with other pro-

cesses. The reference monitor checks the remaining permitted system calls with external effects,

such as open() (see Section 5.2.3).
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Graphene restricts the host system calls using a seccomp filter [147], a feature introduced

in Linux 2.6.12. A seccomp filter allows a Linux process to install an immutable Berkeley Packet

Filter (BPF) program that specifies allowed system calls, as well as specifies the consequence of

invoking certain system calls, such as creating a ptrace event or raising a SIGSYS signal. The BPF

grammar is rich enough to filter scalar argument values, such as only permitting specific opcodes

for ioctl(), as well as filter certain register values, such as blocking system calls from program

counters (i.e., RIP register values) outside of the Linux PAL. The current seccomp filter installed

by the Linux PAL contains 79 lines of straightforward BPF macros. Once a process installs a

seccomp filter, the filter intermediates every system calls from the process and its future children

and guarantees the processes can never bypass the restriction. The Linux PAL uses SIGSYS signals

to capture rejected system calls and can either terminate the whole application or redirect the

system call to libLinux. Section 4.1.1 lists the consecutive steps of system call redirection.

Developing a seccomp filter presents several technical challenges. First, a filter must re-

strict consecutive picoprocesses to install a new filter the reverts the system call restriction. Block-

ing the prctl() system call in a seccomp filter will prevent further installation of seccomp filters.

Second, the BPF grammar can only filter certain values or ranges of a register. The filter needs

to ensure that only the Linux PAL can invoke system calls; however, for satisfying the dynamic

loading behavior of the PAL ABI, the Linux PAL is built as a shared library loaded at an address

randomized by the Linux ASLR (Address Space Layout Randomization) feature. If a filter only

permits a specific range of program counters, a child picoprocess will load the Linux PAL at an-

other randomized address, and the inherited filter will restrict the child picoprocess to invoke any

system calls. The Linux PAL introduces a small, initial loader loaded at a fixed address within

each picoprocess and permitted to invoke system calls. Finally, a seccomp filter cannot check a

string argument, such as a file path for open() or a network address for bind(). Checking a

string argument requires reading user memory of unknown sizes and string comparison, and the

BPF grammar only allows checking an argument arithmetically. Filtering permitted file paths and

network addresses must rely on a trusted reference monitor (see Section 5.2.3).

The seccomp filter blocks unauthorized system calls from anywhere inside a picoprocess.

Even if none of the application binaries contains any SYSCALL or INT $80 instruction, a piece of

malicious application code can always bypass the Linux PAL to invoke unauthorized system calls.
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The application code can simply jump to a SYSCALL instruction inside the Linux PAL, or corrupt a

returned address on the current stack to launch a ROP (return-oriented programming) attack. Even

if the Linux PAL is hidden or isolated from the application, an adversary can always leverage a

gadget, a byte sequence that resembles the target instruction, within an executable or a library.

Therefore, the seccomp enforces both program-counter-based and argument-based restrictions to

block unauthorized system calls from both the Linux PAL and the rest of picoprocess.

Security Implications. Using a system call restriction mechanism like seccomp, Graphene lim-

its the ability of an untrusted application to attack a Linux kernel. Ideally, since libLinux only

requires the PAL ABI, Graphene can adopt a modified Linux kernel that only exports 40 PAL calls

to each picoprocess. The seccomp filter instead isolates a picoprocess on an unmodified Linux

kernel, with a reduced attack surface comparable to only exporting the PAL ABI. According to the

principle of least privilege, each component or layer in a system should only be granted access to a

minimal amount of resources or abstractions required for performing the expected tasks. The sec-

comp filter only permits a minimal amount of system calls with specific flags and opcodes required

by the Linux PAL, so an untrusted application can only trigger a limited amount of execution paths

inside the host Linux kernel. Graphene limits the ability of an untrusted application to explore

known and unknown vulnerabilities on any kernel execution paths for servicing one of the blocked

system calls.

Although a regular Linux process can also leverage a seccomp filter, Graphene makes a

major effort to reduce the system call footprint of any large-scale application to a fixed, small sys-

tem call profile. Analysis shows that the system call footprint of a large-scale application such as

Apache or MySQL can contain more than 100 system calls. Since libLinux has absorbed the

Linux system call table, running Apache, MySQL, or any other application in Graphene leads to

at most 50 host system calls. As a system running a wide range of applications can exposes a

different partial view of the system call table to each application, Graphene has a static system

call profile for all applications, allowing OS developers to focus on testing or analyzing a small

portion of execution paths and corner cases of a Linux kernel. Sun et al. [162] proposes sandbox-

ing an uncertain, potentially-malicious application in Graphene with an unpredictable libLinux

implementation.
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loader.exec = file:/usr/sbin/apache2 # allow loading executable

loader.preload_libs = file:/ graphene/libLinux.so # loading libLinux

fs.allow_ro.libc = file:/ graphene/libc/ # loading modified libc

fs.allow_ro.mods = file:/usr/lib/apache2/modules/ # loading modules

fs.allow_ro.cond = file:/etc/apache2/ # reading configuration

fs.allow_rw.logs = file:/var/log/apache2/ # writing to logs

fs.allow_ro.http_docs = file:/var/www/ # reading website files

net.allow_bind.httpd = 0.0.0.0:80 # binding to local port 80

net.allow_conn.any = 0.0.0.0:1 -65535 # allow any connection

Figure 5.1: A example of a manifest file, containing security rules for the reference monitor to permit
accessing sharable resources. The manifest file is for running a Apache http server (without php and other
language engines).

Static Binaries. Besides security purposes, a seccomp filter provides a compatibility feature for

redirecting hard-coded system calls in a statically-linked application binary. Graphene leverages

the seccomp filter to redirect these leaked system calls back to libLinux. The filter contains BPF

rules to check if the program counters invoking the system calls are parts of the Linux PAL. The

filter blocks system call invoked outside of the Linux PAL and delivers a SIGSYS signal to the PAL

signal handler for redirecting the system calls to libLinux.

5.2.3 Reference Monitor

The reference monitor on a Linux host checks the arguments of host system calls for referencing

any sharable host resources. A host system call like open(), connect(), or bind() specifies a

file system path or a network address for opening a file or network stream and cannot be filtered

by a seccomp filter. The host kernel trusts the reference monitor to only permit a list of sharable

resources in a picoprocess, based on rules in a manifest file. Once the reference monitor has

permitted the creation of a file or network stream, consecutive I/O operations such as reading or

writing data can be trusted by one of the permitted system calls.

The reference monitor enforces simple, white-listing rules based on security mechanisms

already familiarized by users and developers. Figure 5.1 shows an example of resource access

rules in a manifest. First, a manifest lists the URI prefixes of permitted files or directories of an

application, similar to an AppArmor profile. The executable (loader.exec) and the preloaded

library OS binaries (loader.preload libs) are permitted for read-only access by default. The
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reference monitor simply compares file URIs against each permitted URI prefix and checks the

access types; unlike many existing security mechanisms in Linux and similar OSes, such as per-

mission bits, Access Control Lists (ACLs), and SELinux labels, the reference monitor does not

retrieve security policies from file metadata, but obtains the manifest from an out-of-band channel.

Manifest-based security simplifies the inspection, authentication, and population of secu-

rity policies. An Android application is deployed with a similar manifest, listing the accessed files

and other resources, which users approve when installing the application. Developers can authen-

ticate a security policy by signing the content of a manifest. Moreover, to run an application, a user

can choose among multiple manifest files with different levels of security privileges.

Network rules in a manifest are similar to iptables firewall rules for defending a server

or a desktop machine. A network rule specifies a local or remote address that the application is

permitted to bind or connect a network stream. A local or remote address can be an IPv4 or IPv6

address (possible to specify an “any” address, i.e., 0.0.0.0 or [::1]), combined with a specific

port number or range. When an application creates a network stream, the reference monitor checks

whether the local and remote addresses match one of the network rules.

The Linux PAL uses a Linux kernel module as the reference monitor. Upon installation

of the kernel module, a special device /dev/graphene is available for a Graphene picoprocess to

issue system call requests through ioctl() calls. The seccomp filter ensures the Graphene pico-

process only calls system calls like open() and bind() through the reference monitor interface.

The security checks of the reference monitor are stackable with other host security mechanisms.

For example, if a manifest lists a root-privileged file to be accessed by an unprivileged process,

existing security checks in a Linux kernel still blocks the file access even though the reference

monitor permits the access.

A trusted security loader initializes the reference monitor when launching an application

in Graphene. When a user launches an application in Graphene from the command line, the first

picoprocess begins in a new sandbox. The security loader reads the manifest file given by the

user and submits the sandbox rules to the reference monitor. Once the reference monitor starts a

picoprocess in a sandbox, neither the first picoprocess nor any consecutive picoprocesses spawned

in the sandbox can ever escape the sandbox or drop the restrictions on certain resources.
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Alternative Approaches. Other approaches can implement the reference monitor without mod-

ifying a Linux kernel, with a trade-off of performance or development simplicity. An approach is

to implement the reference monitor as a trusted process receiving ptrace events from Graphene

processes. Using the ptrace() system call, this reference monitor can retrieve user memory from

the monitored process, and block the system calls which request for unpermitted resources. Un-

fortunately, intercepting every system calls with ptrace events introduces significant overhead to

PAL calls; thus, this approach is not ideal for isolating Graphene on a Linux host.

Another approach is to translate the isolation rules to an AppArmor profile or iptables rules.

Since file and network rules of Graphene are similar to file rules of AppArmor and firewall rules of

iptables, Graphene can convert a manifest file, either statically or dynamically, to security policies

recognized by AppArmor and iptables. This approach will not require a Graphene-specific refer-

ence monitor installed as a Linux kernel module. Graphene leaves the integration with AppArmor

and iptables for future work.

Dynamic Process-Specific Isolation. A child picoprocess may either inherit its parent’s sand-

box or start in a new sandbox, by either specifying a flag to ProcessCreate() or calling the

sandboxing PAL call, SandboxSetPolicy(). A new sandbox may obtain a subset of the original

file system view, but can never request access to new regions of the host file system. If a child

picoprocess voluntarily moves itself to a new sandbox using SandboxSetPolicy(), the Linux

PAL issue another ioctl() call to /dev/graphene to dynamically detach the picoprocess from

the parent’s sandbox and update sandbox rules. When a process detaches from a sandbox, the

reference monitor effectively splits the original sandbox by closing any RPC streams that could

bridge the two sandboxes.

Sandbox creation in Graphene can provide more options than virtualization, to reflect the

security policy of applications at any timing, in the granularity of picoprocess. A picoprocess can

voluntarily detach itself from the current sandbox, dropping its privileges, after finishing security-

sensitive operations. If a picoprocess decides one of its children is not trustworthy, it may also start

the child under a restricted manifest, or promptly shut down RPC streams to stop sharing OS states.

The picoprocess that moves to a separate sandbox will have a restrictive view of the filesystem,

and no coordination with the previous sandboxes.
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5.3 Summary

The Linux PAL successfully leverages a limited subset of Linux system calls, to implement the

whole PAL ABI for running a full-featured library OS. The PAL ABI separates the development of

a host OS or hypervisor from the complexity of emulating a sufficiently-compatible Linux kernel.

The Linux PAL translates most of the PAL ABI to similar Linux system calls. Only a few PAL

calls, such as process creation and inter-thread synchronization, require additional attention for

developing an efficient implementation strategy.

The Linux PAL also enforces security isolation between mutually-untrusting applications,

by placing applications in separate, VM-like sandboxes. The security isolation on a Linux host is

based on system call restriction using a seccomp filter, and a trusted reference monitor. Security

isolation at the host interface restricts an untrusted application to explore vulnerable execution

paths inside a Linux kernel. A seccomp filter enforces a fixed system call profile, regardless of

bloated dependency of an application. The reference monitor follows simple, white-listed manifest

rules listing all the authorized files and network addresses of an application, using well-known

semantics such as AppArmor [37] or iptable-like firewall rules [92]. The reference monitor can

further enforce dynamic, process-specific isolation by splitting a sandbox to run a child picoprocess

under more restricted resource permissions. Graphene on a Linux host can serve as a sandbox

framework with a reduced attack surface upon the host kernel.
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Chapter 6

The SGX Host

Intel SGX [122] shows a compelling example where an unmodified application fails to run inside

a beneficial, new host environment. SGX provides an opportunity of running trusted applications

with a strong threat model where OSes, hypervisors, and peripheral devices can be malicious.

SGX presents challenges to running an unmodified application, including shielding the application

from malicious host system calls. Graphene significantly reduces the complexity of resolving both

compatibility and security issues for running unmodified applications on SGX.

This chapter summarizes the development of an SGX framework using Graphene to protect

unmodified Linux applications from the untrusted host OS. This chapter starts with the overview

of SGX-specific challenges for porting an application, followed by a comparison of approaches

to shielding an application from an untrusted host [39, 46, 152]. This chapter then describes

the design of Graphene-SGX, an SGX port of Graphene; Graphene-SGX fits dynamically-linked,

unmodified applications into the paradigm of SGX-ready applications, and customizes an interface

to an untrusted OS to simplify security checks against malicious host system calls.

6.1 Intel SGX Overview

This section summarizes SGX and current design points for running or porting applications on the

SGX platform.
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6.1.1 SGX (Software Guard Extensions)

SGX [122] is a feature added in the Intel sixth-generation CPUs, as a hardware support for trusted

execution environments (TEEs) [97, 111, 145, 163]. SGX introduces a number of essential hard-

ware features that allow an application to protect itself from the host OS, hypervisor, BIOS, and

other software. The security guarantees of SGX are particularly appealing in cloud computing, as

users might not fully trust the cloud provider. Even if the whole cloud infrastructure is under the

administrative domain, commodity operating systems have a long history of exposing security vul-

nerabilities to untrusted users, due to flaws in software and hardware [26, 38, 100, 116, 177]. Any

sufficiently-sensitive applications would benefit from running on SGX to evade the consequences

of a compromised OS kernel.

The primary abstraction of the SGX platform is an enclave, an isolated execution environ-

ment within the virtual address space of an application process. The features of an enclave include

confidentiality and integrity protection: the code and data in an enclave memory region do not

leave the CPU package unencrypted or unauthenticated; when memory contents are read back into

the last-level cache, the CPU decrypts the contents and checks the integrity. The memory encryp-

tion prevents an OS kernel, hypervisor, or even firmware from physically fetching the application

secret from DRAMs; SGX can even survive a stronger attack at the hardware level, such as cold-

boot attacks [82], an attack based on removing DRAM from the memory bus at a low temperature

and placing it in another machine. SGX also cryptographically measures the integrity of enclave

code and data at start up and can generate attestation to remote systems or enclaves to prove the

integrity of a local enclave.

SGX enables the defense against a threat model where one only trusts the Intel CPUs and

the code running in the enclaves. SGX protects applications from three different types of attacks on

the same host, as summarized in Figure 6.1. First, untrusted application code inside the same pro-

cess but outside the enclave cannot access enclave memory or arbitrarily jump into enclave code.

Second, OSes, hypervisors, and other system software cannot peek into enclaves from administra-

tive domains. Third, other applications on the same host cannot exploit vulnerabilities in an OS

kernel or system software to escalate privileges. Finally, off-chip hardware, such as buses, DRAM,

and peripheral devices can be hijacked or replaced with malicious components, but can never steal
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Figure 6.1: The threat model of SGX. SGX protects applications from three types of attacks: in-process
attacks from outside of the enclave, attacks from OS or hypervisor, and attacks from off-chip hardware.

or corrupt enclave secrets both encrypted and authenticated inside the memory. An SGX enclave

can choose to trust a remote service or enclave and be trusted in return after performing a procedure

of inter-platform attestation [35].

6.1.2 SGX Frameworks

Despite the security benefits, SGX imposes a number of restrictions on enclave code that require

application changes or a layer of indirection. Some of these restrictions are motivated by security,

such as disallowing system calls inside of an enclave, so that system call results can be sanitized by

a piece of carefully-written shielding code in the enclave before being used by the application. The

typical applications for processing security-sensitive data in a cloud environment include servers,

language runtimes, and command-line programs, which rely on faithful emulation of Linux system

call semantics, such as mmap() and futex(). Developers who wish to run these applications on

SGX must either use a trusted, wrapper library that reproduces the semantics in an enclave, or

partitions application code unrelated to security. The extra effort for adapting existing application

code into SGX can delay deployment of the technology; some security-sensitive applications can

benefit from porting into SGX as soon as possible.

Related work shows concerns about the significant code changes to applications involved in

porting to SGX. Although Haven [46] showed that a library OS could run unmodified applications

on SGX, this work pre-dated availability of SGX hardware. Since then, several papers have argued
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that the library OS approach is impractical for SGX, both in performance overhead and trusted

computing base (TCB) bloat, and that one must instead refactor one’s application for SGX. For

instance, a feasibility analysis in the SCONE paper concludes that “On average, the library OS

increases the TCB size by 5×, the service latency by 4×, and halves the service throughput” [39].

Shinde et al. [152] argue that using a library OS, including libc, increases TCB size by two orders

of magnitude over a thin API wrapper layer with shielding ability.

Graphene-SGX shows that a library OS can facilitate deployment of an unmodified ap-

plication to SGX, granting immediate security benefits without crippling performance cost and

full-blown TCB increase. Besides the fact that Haven is evaluated upon a simulated hardware,

Haven has a large TCB from adopting native Windows 7 code [138]. Graphene-SGX, on the other

hand, shows performance overheads comparable to the range of overheads reported in SCONE.

The authors of PANOPLY also notes that Graphene-SGX is 5-10% faster than PANOPLY [152].

Arguments about TCB size are more nuanced, and a significant amount of the discrepancies arise

when comparing incidental choices like libc implementation (e.g., musl vs. glibc). Graphene, not

including glibc, adds 53 kLoC to the application’s TCB, which is comparable to PANOPLY’s 20

kLoC or SCONE’s 97 kLoC. Our position is that the primary reduction to TCB comes from either

compiling out unused library functionality, as in a unikernel [119], or further partitioning an appli-

cation into multiple enclaves with fewer OS requirements. When one normalizes for functionality

required by the code in the enclave, the design choice between a library OS or a thin shielding

layer has no significant impact on TCB size.

Besides running unmodified Linux binaries on SGX, Graphene-SGX also contributes sev-

eral usability enhancements, including integrity support for dynamically-loaded libraries, enclave-

level forking, and secure inter-process communication (IPC). Users need only configure features

and cryptographically sign the configuration. Graphene-SGX is also useful as a tool to accelerate

SGX research. Graphene-SGX does not subvert any opportunities of optimizing an application

for SGX or partitioning application code outside of an enclave for further reducing TCB size. A

number of SGX frameworks and security enhancements [103, 130, 148, 151] are complementary

to Graphene-SGX.
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6.1.3 Shielding Complexity

A key question for developing an SGX framework is how much OS functionality to pull into an

enclave. A library OS and a thin shielding layer essentially make opposite decisions in protecting

OS functionality on untrusted hosts. At one extreme, library OSes like Graphene-SGX and Haven

pull most application-supporting code of an OS into an enclave. On the other extreme, thin shield-

ing layers, such as SCONE and PANOPLY, redirect an API layer (e.g., POSIX) or the system call

table outside of an enclave and shield the application from malicious API or system call results.

The decision to pull OS functionality into enclaves impacts the complexity of shielding an

application from the untrusted host. The code and data inside of an enclave gain confidentiality

and integrity protection from SGX; If an OS feature is kept outside of an enclave, the applica-

tion or a wrapper layer in the enclave must design sufficient shielding code to check the results of

the OS feature as part of the untrusted host. The concept of checking an untrusted OS feature is

comparable to verifying the results of an outsourced database or program [41, 48, 184]. To make

sure that outsourcing an operation is beneficial, the complexity of verifying an operation must be

sufficiently lower than performing the operation. Some OS features are relatively verifiable; for

example, a shielding layer can check the integrity of data sent to an untrusted storage using reason-

ably robust cryptographic functions. Other OS features, such a namespace, are less straightforward

to verify; without a cryptographic protocol or a zero-knowledge proof, an API or system call wrap-

per needs to predict the correct results to check for integrity and might end up emulating part of

the operations just like a library OS.

Specifically, Iago attacks [55] threaten a framework that shields against an existing API

layer or system call table in an untrusted domain. Checkoway and Shacham demonstrate several at-

tacks against shielding systems like InkTag [86] and Overshadow [58], based on manipulating sys-

tem call return values. A common feature of these shielding systems is the verification of a legacy

API serviced by an untrusted kernel. Examples of Iago attacks include corrupting a protected stack

by returning an address on the stack from mmap(); forcing a replay attack on SSL (Secure Sockets

Layers) protocol seeded by the returned values of getpid() and time(). Applications often abuse

system APIs for internal implementation so that an OS can explore vulnerabilities inside of either

applications or a shielding system.
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An important lesson learned from Iago attacks is that an existing API layer like POSIX or

system call table is not suitable for the context of untrusting an operating system. The definition

of POSIX API or Linux system calls assumes an untrusted client and has explicit semantics for

checking against malicious inputs. On the other hand, these existing APIs do not specify how the

clients should defend against an untrusted OS, leaving the design of proper defenses an exercise for

application developers. Moreover, these existing APIs require an application to endow sensitive

states to the operating system, making the API results more difficult to verify. For example, a Linux

kernel associates a file descriptor with the current offset for accessing the file contents, whereas

the application only specifies the file descriptor and a user buffer for read() or write(). While

an OS can simply refuse to trust the inputs from an application, the same cannot be said for a

self-protecting application or a shielding system without fully anticipating attacks from an OS.

Existing shielding layers, including SCONE [39] and PANOPLY [152], contribute shield-

ing techniques for parts of the Linux system call table or POSIX API. In hindsight of the mmap()

attack reported by Checkoway and Shacham [55], SCONE and PANOPLY prevent pointer-based

Iago attacks by checking any memory addresses returned by the untrusted OS to be outside of the

enclave memory, and the shielding layer will copy the memory contents into the enclave. SCONE

also enforces the confidentiality and integrity of file contents and network payloads using cryp-

tographic techniques to encrypt and authenticate the data, for any files and network connections

marked by the users as security-sensitive. These techniques also apply to shielding applications in

Graphene-SGX.

Library OSes like Haven [46] and Graphene-SGX provide an opportunity to redefine an

API with the assumption of untrusting operating systems. A library OS absorbs API components

or the system call table into an enclave, leaving a narrowed host interface which is much easier

to defend than a bloated API layer. Both Haven and Graphene-SGX customize a host ABI for

enclaves, or an enclave ABI, and treat the host OS as completely untrusted. Haven contains a proxy

layer to redirect trustworthy OS services—besides services implemented inside the enclave—from

a remote, trusted host. For example, Haven does not trust the host file system, and instead, loads a

guest-level file system using an encrypted virtual disk provisioned from a remote host.

Graphene-SGX further defines an enclave ABI with shielding complexity in mind. Graphene-

SGX adds a trusted enclave PAL below the PAL ABI, to reduce the 40 PAL calls to merely 28
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enclave calls (see Section 6.3.2). Graphene-SGX defines each enclave call with clear strategies or

semantics for checking the results. For each security-sensitive enclave call, Graphene-SGX accepts

exactly one correct result, either cryptographically signed or provable with minimum bookkeep-

ing or emulation. Among 28 enclave calls defined in Graphene-SGX, 18 calls are safe from Iago

attacks; 8 calls are not security-sensitive; 2 calls can be potentially blocked by the host (denial-of-

the-service); only 2 calls are not yet shielded and currently left for future work.

Application Code Complexity. The motivating applications for SGX are small cryptographic

functions like an encryption engine, or a simple network service running in the cloud. These

applications are relatively small in the enclave, putting minimal demands on a shim layer. Even

modestly complex applications, such as a R runtime and a simple analytics package, require dozens

of system calls for providing wide-ranging OS functionality, including fork() and execve(). For

these applications, there are several development options: first, application developers can modify

the application to require less functionality of the runtime; second, a shielding layer can open and

offer defenses for interfaces to the untrusted OS; finally, a library OS can pull more functionality

into enclaves. This thesis argues that the best solution for ensuring an application to be secure in an

enclave is up to the demand of the application. This chapter provides an efficient baseline for the

approach of pulling functionality into a library OS, to run a wider range of unmodified applications

on SGX. However, developers should be free to explore the other two approaches if application

modification is possible.

Application Partitioning. An application can have multiple enclaves, or put less important func-

tionality outside of the enclave. For instance, a web server can keep cryptographic keys and a

SSL library in an enclave, but still allow client requests services outside the enclave. Similarly, a

privilege-separated or multi-principal application might create a separate enclave for each privilege

level. In general, Linux applications are more likely to be partitioned for privilege separation, es-

pecially for a set-effective-UID-to-root program that is escalated to root privileges from beginning.

The application partitioning techniques are application-specific, and often requires human

intervention [115]. This thesis focuses on running an unmodified application as a whole. Parti-

tioning a complex application into multiple enclaves can be good for security, and should be en-

couraged given enough development time. In support of this goal, Graphene-SGX can run smaller
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pieces of code, such as a library, in an enclave, as well as coordinate shared state across enclaves.

6.2 Security Models

This section discusses the security models regarding running an unmodified application inside

an enclave, including the threat model, user configurations for enclave shielding policies, and an

inter-enclave coordination model for the support of multi-process applications.

6.2.1 Threat Model

Graphene-SGX assumes a typical threat model for SGX enclaves, different from Graphene on a

trusted Linux kernel or other hosts. An application only trusts the CPUs and any code running

inside the enclave, including the library OS (libLinux), a trusted PAL, libc, and any supporting

libraries. All other components are untrusted: (1) hardware outside of the Intel CPU package(s),

(2) the OS, hypervisor, and other system software, (3) other applications executing on the same

host, including unrelated enclaves, and (4) user-space components that reside in the application

process but outside the enclave. Graphene-SGX assumes any of these untrusted components to be

potentially malicious and will try to exploit any known or unknown vulnerabilities of the trusted

components. Graphene-SGX places supporting code outside of the enclave, as an untrusted PAL,

which is needed only for liveness, but not safety.

The trust computing base (TCB) of Graphene-SGX also includes an architectural enclave,

called aesmd, provided by Intel’s SGX SDK [91]. aesmd is a privileged enclave authenticated

by Intel’s master signing key; aesmd receives attributes in the enclave signature of an application

and generates a token for approving enclave creation. Any framework that uses SGX for remote

attestation must connect to aesmd to obtain a quote for proving that the enclave is running on

an authentic Intel CPU, instead of a simulator. Graphene-SGX uses, but does not trust, the Intel

SGX kernel driver, which mediates the creation of enclaves and swaps enclave pages. The current

SGX hardware has a 93.5MB limitation on the total amount of physical memory shared among

all concurrent enclaves on the same host, and the Intel SGX kernel driver swaps enclave pages to

storage when one of the running enclaves demands more physical memory. Other than the aesmd
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enclave and the Intel SGX kernel driver, Graphene-SGX does not use or trust any other system

software.

Graphene-SGX only handles the challenges of shielding an application from any attacks

leveraging the vulnerabilities on the host interface (i.e., Iago attacks). Other application-specific

security threats for SGX are beyond the scope of Graphene-SGX. For instance, an untrusted ker-

nel can interrupt the enclave execution and refuse to schedule CPU resources to enclaves, causing

denial-of-service (DoS) in applications. Several works point out that an enclave can leak appli-

cation secrets through side channels or controlled channels in cache architectures, memory access

patterns, network traffics, and more [57, 78, 81, 127, 173, 176, 178]. The techniques of thwart-

ing or concealing side channels are application-specific and cannot be solely enforced in SGX

frameworks or hardware. Several cryptographic function implementations have been known to be

vulnerable to side channel attacks [179, 186]; for instance, users and developers, or Graphene-SGX

itself, should avoid using one of the table-based AES libraries that are prone to memory access side

channels and switch to more secure, hardware-accelerated AES-NI [85].

6.2.2 User Policy Configuration

Despite the fact that Graphene-SGX supports running an unmodified application on SGX, the user

must make certain policy decisions regarding how Graphene-SGX should shield the application.

The requirement is that the user must configure and sign the policy on a trusted host. A goal of

Graphene-SGX is to balance policy expressiveness with usability, to minimize the cost of com-

posing a policy and avoid mistakes. Without any user policy, Graphene-SGX creates a closed

container where an application is not allowed to access any resources from the untrusted host.

As with Graphene on other hosts, Graphene-SGX reuses the manifest for user policy con-

figuration of an application. In Graphene, a manifest specifies which resources an application is

allowed to use, including a unioned, chroot file system and a set of iptables-style network rules.

The original intention of the manifest was to protect the host: a reference monitor can easily iden-

tify the resources an application might use, and reject an application with a problematic manifest.

The same intention applies to Graphene-SGX, despite the difference of threat models.
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In Graphene-SGX, a manifest is extended to protect an application from the untrusted host

file system. Specifically, a manifest can specify secure hashes of trusted files that are integrity-

sensitive and read-only, such as dynamic libraries, scripts, and configuration files. As part of

opening a protected file, Graphene-SGX verifies the integrity of trusted files by checking the secure

hashes. A trusted file is only opened if the secure hash matches. The default secure hash algorithm

in Graphene-SGX is SHA-256, mainly for the generality in software signing, but other secure

hash or signature algorithms are also viable options. Graphene-SGX includes a signing utility that

hashes all trusted files and generates a signed manifest that can be used at run-time. The manifest

can also specify files or directories that are not integrity-sensitive and can be accessed without

being trusted. A manifest must explicitly specify all trusted or accessible files, and other unlisted

files are considered potentially malicious.

The manifest also specifies certain resources be created at initialization time, including the

number of threads, the maximum size of the enclave and the starting virtual address of the enclave.

Thus, Graphene-SGX extends the Graphene manifest syntax for specifying these options. Other

security-sensitive options inherited from Graphene, such as filtering environment variables and

enabling debug output, are also protected as part of the signed manifest.

6.2.3 Inter-Enclave Coordination

Graphene-SGX extends the multi-process support of Graphene to enclaves by running each pro-

cess with a library OS instance in an enclave. For instance, when an application calls fork(),

Graphene-SGX creates a second enclave to run as a child process and copies the parent enclave’s

contents over message passing. Graphene-SGX defines a group of coordinating enclaves as an

enclave group, similar to a sandbox of Graphene. Figure 6.2 shows an example of two mutually-

untrusting enclave groups running on a host. Graphene-SGX supports all the Linux multi-process

abstractions that Graphene has implemented in the user space, including fork(), execve(), sig-

nals, namespaces, shared file descriptors, and System V semaphores and message queues.

The implementation of multi-process abstractions in Graphene makes securing these ab-

stractions easy in Graphene-SGX. Because all multi-process abstractions are implemented in en-

claves and do not export shared states to the host OS, Graphene-SGX only has to add two features
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Figure 6.2: Two enclave groups, one running Apache and the other running Lighttpd, each creates a child
enclave running CGI-PHP. Graphene-SGX distinguishes the child enclaves in different enclave groups.

for protecting multi-process abstractions. First, Graphene-SGX adds the ability for enclaves to

authenticate each other via local attestation, and thereby establish a secured RPC channel, with

messages both encrypted and signed. Second, Graphene-SGX provides a mechanism to securely

fork into a new enclave, adding the child to the enclave group (see Section 6.3.3).

6.3 Shielding a Library OS

This section discusses the shielding of a library OS in one or multiple enclaves, based on securing

several features required by the host ABI, including dynamic linking, the PAL calls, and multi-

process abstractions.

6.3.1 Shielding Dynamic Loading

To run unmodified Linux applications, Graphene-SGX implements dynamic loading and run-time

linking with protection of binary integrity. In a major Linux distribution like Ubuntu, more than

99% of application binaries are dynamically linked against libraries [166]. Static linking is popular

for SGX frameworks because it is easy to load and facilitates the use of hardware enclave mea-

surements. Dynamic linking requires rooting trust in a dynamic loader, which must then measure

the binaries. For Haven [46], the enclave measurement only verifies the integrity of Haven itself,

and the same measurement applies to any application running on the same Haven loader.

Graphene-SGX extends the Haven model to generate a unique signature for any com-

bination of executable and dynamically-linked libraries. Figure 6.3 shows the architecture and
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Figure 6.3: The Graphene-SGX architecture. The executable is position-dependent. The enclave includes
an OS shield, a library OS, libc, and other user binaries.

the dynamic-loading process of an enclave. Graphene-SGX starts with an untrusted PAL loader

(pal-sgx), which calls the Intel’s SDK SGX drivers to initialize the enclave. The initial state of an

enclave, which determines the measurement then attested by the CPU, includes a shielding library

(libshield.so), the executable to run, and a manifest file that specifies the attributes and loadable

binaries in this enclave. The shielding library then loads a Linux library OS (libLinux.so) and

the glibc libraries (ld.so and libc.so). After enclave initialization, the loader continues loading

additional libraries, which are checked by the shielding libraries. If the secure hash does not match

the manifest, the shield will refuse to load the libraries.

To reiterate, Graphene-SGX ensures the integrity of an application as follows. The Intel

CPU verifies the measurement of the Graphene-SGX trusted PAL, an executable, and a mani-

fest file. The trusted manifest includes secure hashes of all binaries dynamically loaded after en-

clave creation. This strategy does require trust in the Graphene-SGX, in-enclave boot-loading and

shielding code to correctly verify and load binaries according to the manifest and reject any errant
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binaries offered by the OS. This is no worse than the level trust placed in Haven’s dynamic loader

but differentiates applications or even instances of the same application with different libraries.

Memory Permissions. By default, the Linux linker format (ELF) often places code and linking

data (e.g., jump targets) in the same page. It is common for a library to temporarily mark an

executable page as writable during linking, and then protect the page to be execute-only. This

behavior is ubiquitous in current Linux shared libraries, but could be changed at compile time to

pad writable sections onto separate pages.

The challenge on version 1 of SGX is that an application cannot revoke page permissions

after the enclave starts. To support this ELF behavior, we currently map all enclave pages as

readable, writable, and executable. This can lead to some security risks, such as code injection

attacks in the enclave. In a few cases, this can also harm functionality; for instance, some Java

VM implementations use page faults to synchronize threads. Version 2 of SGX [123] will support

changing page protections, which Graphene-SGX will adopt in the future.

Position-Dependent Executables. SGX requires that all enclave sizes be a power-of-two and

that the enclave starts at a virtual address aligned to the enclave size. Most Ubuntu Linux executa-

bles are compiled to be position-dependent and typically start at address 0x400000. The challenge

is that, to create an enclave that includes this address and is larger than 4MB, the enclave will

necessarily need to include address zero.

Graphene-SGX explicitly includes address zero in the enclave, as a net positive for security.

Since Graphene-SGX does not make further strong claims regarding the presence of code that

follows null pointers, including address zero is not strictly necessary. Graphene-SGX can still

mark this address as unmapped in an enclave, preventing both trusted and untrusted code to access

this address. Therefore, referencing a null pointer will still result in a page fault in the host. On the

other hand, if address zero were outside of the enclave, there is a risk that the untrusted OS could

map this address to dangerous data [25], undermining the integrity of the enclave.

Relocation and Resolution. Dynamic linking is not exactly a deterministic process. The loading

order of user libraries may lead to different symbol resolution results. Some ELF binaries contain

run-time linking functions (i.e., IFUNC functions), which can dynamically determine the target
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of symbols. ASLR (address space layout randomization), a feature implemented by libLinux,

changes the base address of a relocatable binary in each execution. All these factors may affect the

eventual result of dynamic loading to be different from what users or developers have expected.

Graphene-SGX puts the trust in libLinux and glibc loader (ld.so) to ensure the integrity

of the dynamic linking process. The shielding code verifies any inputs from the untrusted OS, in-

cluding checking the integrity measurement of each binary, and filtering environment variables that

may affect the linking result, such as LD PRELOAD and LD LIBRARY PATH. Finally, for attestation,

Graphene-SGX can generate a summary of the dynamic linking result, including the base address

and global offset table (GOT) of each binary, to prove the integrity to a remote client.

6.3.2 Shielding the PAL ABI

For a single-process application, the Linux system calls are serviced by a library OS inside the

enclave. Graphene-SGX reuses the same library OS used on other hosts, such as Linux, Windows,

and FreeBSD, by including an in-enclave SGX PAL for exporting the PAL ABI. Within the 40

PAL calls defined in the PAL ABI, the SGX PAL focuses on exporting 35 calls that are required

by libLinux. The remaining PAL calls are either pure optimizations (e.g., bulk IPC), or APIs for

a different threat model (e.g., sandbox creation).

The evolution of the POSIX API and Linux system call table were not driven by a model

of mutual distrust, and retrofitting protection onto this interface is challenging. Checkoway and

Shacham [55] demonstrate the subtlety of detecting semantic attacks via the Linux system calls,

called Iago attacks. Projects such as Sego [105] go to significant lengths, including modifying the

untrusted OS, to validate OS behavior on subtle and idiosyncratic system calls, such as mmap() or

getpid().

To reduce shielding complexity, Graphene-SGX further defines an enclave ABI which has

simpler semantics than the PAL ABI and contains only 28 enclave calls to reach out to the untrusted

OS. The challenge in shielding an enclave interface is carefully defining the expected behavior of

the untrusted system, and either validating the responses, or reasoning that any response cannot

harm the application. By adding a layer of indirection under the library OS, Graphene-SGX can

define an enclave ABI that has more predictable semantics, which is, in turn, more easily checked
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Classes Safe Benign DoS Unsafe

Entering enclaves & threads 2 0 0 0
Cloning enclaves & threads 2 0 0 0
File & directory access 3 0 0 2
Thread exits 1 0 0 0
Network & RPC streams 6 1 0 0
Scheduling 0 1 1 0
Stream handles 2 2 1 0
Mapping untrusted memory 1 1 0 0
Miscellaneous 1 1 0 0

Total 18 6 2 2

Table 6.1: An overview of 28 enclave calls of Graphene-SGX, including 18 safe calls (with checkable
semantics); 6 benign calls (no harmful effects); 2 DoS calls (may cause denial-of-service); and 2 unsafe
calls (potentially attacked by the host).

at run time. For instance, to read a file, the enclave ABI requests that untrusted OS to map the file

at an address outside the enclave, starting at an absolute offset in the file, with the exact size needed

for verification. After copying chunks of the file into the enclave, but before use, the SGX PAL

hashes the contents and checks against the manifest. The enclave ABI limits the possible return

values of each enclave call to one predictable answer, and thus reduces the space that the untrusted

OS can explore to find attack vectors to the enclave. Many system calls are partially (e.g., brk())

or wholly (e.g., fcntl()) absorbed into libLinux, and do not need shielding from the untrusted

OS.

Table 6.1 lists the 28 enclave calls of Graphene-SGX, organized by the risk, and Table 6.2

further specifies the outputs, inputs, and checking strategies of the enclave calls. This thesis cat-

egorizes 18 enclave calls as safe because the responses from the untrusted OS are easily checked

in the enclave. Graphene-SGX checks these safe enclave calls based on three strategies. The first

strategy is to blocking out all inputs from the untrusted OS. For instance, when the enclave cre-

ates a new thread using CLONE THREAD(), a pre-allocated enclave thread is waken up and takes

no input from outside of the enclave. The second strategy is to define the input semantics to be

as predictable as possible for checking. An example of a predictable call is MAP UNTRUSTED(),

which simply maps a file outside the enclave. The third strategy is to establish cryptographic tech-

niques for checking data integrity. For instance, after mapping a file with MAP UNTRUSTED(), the

SGX PAL copies the file contents into the enclaves, generates a secure hash, and matches with
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Classes Enclave calls Outputs Inputs Risks Checking strategies / threats

Entering
enclaves
& threads

START ENCLAVE args,envp,

rpc fd

safe Filter args & envp based on manifest;
local attestation for RPC

START THREAD safe All thread start at clean state

Cloning
enclaves
& threads

CLONE ENCLAVE exec,manifest rpc fd safe Local attestation for child enclave
measurement and RPC

CLONE THREAD safe Thread parameters stored in enclave;
start a clean thread

File &
directory
access

FILE OPEN path fd safe Check if listed in the manifest
FILE TRUNC fd,size safe Update the secure hash
FILE ATTRS fd attrs unsafe File attributes need to be signed in

advance (future work)
DIR LIST fd dir list unsafe Directory contents need to be signed in

advance (future work)

Thread
exits

EXIT THREAD safe Clean up state before exit; the thread
can be reused, but will never return to
the former state.

Network
& RPC
streams

SOCK LISTEN addr fd safe Establish a TLS/SSL connection in
application level or PALSOCK ACCEPT fd newfd safe

SOCK CONNECT addr fd safe
SOCK SEND fd,data,size safe Contents secured by TLS/SSL in

application level or PALSOCK RECV fd data,size safe
SOCK SETOPT fd,option benign Only as hints to the host
SOCK SHUTDOWN fd,access safe Send “close notify” over a TLS/SSL

connection

Schedul-
ing

YIELD tid benign Only as hints to the host
FUTEX addr,op DoS Calls may prematurely return or never

return; the host may corrupt futex
values (addr is outside the enclave)

Stream
handles

HANDLE CLOSE fd benign Only as hints to the host
HANDLE POLL event array polled DoS The host may not deliver events
HANDLE SEND fd,send fds safe Handle contents and session keys sent

over secured RPCHANDLE RECV fd recv fds safe
HANDLE FLUSH fd benign Only as hints to the host

Untrusted
memory

MAP UNTRUST fd,off,size addr safe addr must be outside the enclave;
secure hashes verified before use

FREE UNTRUST addr,size safe Freeing untrusted memory cannot
corrupt the enclave

Miscella-
neous

SYSTIME timestamp safe Ensure monotonic increase; retrieve
timestamps from remote servers if
accuracy is necessary

SLEEP sleep msec remaining benign remaining time ≤ sleep time

Table 6.2: Specifications of 28 enclave calls, including the outputs, inputs, risks (safe, benign, DoS, or
unsafe), and strategies for checking the responses from the untrusted OS.
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the manifests. Using the same strategy, a TLS/SSL connection can be establish either inside the

application or PAL, to check the results of accessing network and RPC streams, with enclave calls

like SOCK SEND(), SOCK RECV(), and SOCK SHUTDOWN().

Other 6 enclave calls are benign, which means, if a host violates the specification, the

library OS can easily compensate or reject the response. An example of a benign enclave call is

STREAM FLUSH(), which requests that any data buffered inside the host OS to be flushed out to a

network or a disk. Cryptographic integrity checks on a file or network communication can detect

when this operation is ignored by untrusted software. Another example is YIELD(), an enclave call

for requesting the untrusted OS to schedule CPU resources. The result of YIELD() does not affect

the integrity of an application because it simply serves as a hint to the untrusted OS scheduler.

Like any SGX framework, Graphene-SGX does not guarantee liveness of enclave code:

the OS can refuse to schedule the enclave threads. Two interfaces are susceptible to liveness

issues (labeled DoS): FUTEX WAIT() and HANDLE POLL(). In the example of HANDLE POLL(), a

blocking synchronization call may never return, violating liveness but not safety. A malicious OS

could cause a futex call to return prematurely or corrupt the futex value; thus, synchronization code

in the PAL must handle spurious wake-ups and either attempt to wait on the futex again, or spin

in the enclave. For HANDLE POLL(), the untrusted OS may never deliver any stream events into

an enclave. Denial-of-the-service attacks on these enclave calls are less of a security threat than

integrity attacks, due to the assumption that the untrusted OS controls all the hardware resources.

Finally, only two enclave calls, namely FILE ATTRS() and DIR LIST(), are unsafe, be-

cause Graphene-SGX currently does not protect integrity of file attributes or directory lists. Checks

for these two calls would require signing the file attributes or directory lists on a trusted host. Other

existing work like Inktag [86] also demonstrate the integrity checks for file attributes. Graphene-

SGX leaves the checks for these two enclave calls for future work.

File Authentication. As with libraries and application binaries, configuration files and other

integrity-sensitive data files can have SHA256 hashes listed in the signed manifest. At the first

open() to ones of the listed files, Graphene-SGX maps the whole file outside the enclave, copies

the content in the enclave, divides into 64KB chunks, constructs a Merkle tree of the chunk hashes,

and finally validates the whole-file hash against the manifest. In order to reduce enclave memory
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usage, Graphene-SGX does not cache the whole file after validating the hash, but keeps the Merkle

tree to validate the untrusted input for subsequent, chunked reads. The Merkle tree is calculated

using AES-128-GMAC.

Memory Mappings. The current SGX hardware requires that the maximum enclave size be

set at creation time. Thus, a Graphene-SGX manifest can specify how much heap space to re-

serve for the application, so that the enclave is sufficiently large. This heap space is also used

to cache the Merkle trees of file contents. The SGX PAL contains a page allocator for servicing

VirtMemAlloc() calls inside the enclave. Once the SGX PAL has exhausted the reserved heap, no

more pages can be assigned to the library OS or the application. The restriction of enclave memory

is temporary, since SGX version 2 will add instructions for adding empty pages to enclaves in run

time.

Threading. Graphene-SGX currently uses a 1:1 threading model, whereas SCONE and PANOPLY

support an m:n threading model. The issue is that SGX version 1 requires the maximum number

of threads in the enclave to be specified at initialization time. Since the number of threads in an

enclave is restricted by the space allocated for thread control sections (TCSs), SGX version 2 will

support dynamic thread creation alone with dynamic paging. The current version of Graphene-

SGX requires users to specify how the maximum amount of threads the application needs inside

the manifest.

This choice impacts performance, as one may be able to use m:n threading and asyn-

chronous calls at the enclave boundary to reduce the number of exits. This is a good idea we

will probably implement in the future. Eleos [130] addresses this performance problem on un-

modified Graphene-SGX with application-level changes to issue asynchronous system calls. The

benefits of this optimization will probably be most clear in I/O-bound network services that receive

many concurrent requests.

SGX virtualizes the FS and GS registers, which allows Graphene-SGX to assign the in-

enclave address of thread-local storage. Graphene-SGX sets the values of FS and GS registers

using the WRFSGSBASE instruction, and requires no extra enclave call to the untrusted OS.
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Exception Handling. Graphene-SGX handles hardware exceptions triggered by memory faults,

arithmetic errors, or illegal instructions in applications or the library OS. SGX does not allow ex-

ceptions to be delivered directly into the enclave. An exception interrupts enclave execution, saves

register state on a thread-specific stack in the enclave, and returns to the untrusted OS. When SGX

re-enters the enclave, the interrupted register state is then used by Graphene-SGX to reconstruct

the exception, pass it to the library OS, and eventually deliver a signal to the application.

The untrusted OS may deliberately trigger memory faults, by modifying the page tables.

For instance, controlled channel attacks [178] manipulate the page tables to trigger page faults

on every branching points in an SGX application and observe the control flow. The overhead for

delivering memory faults may also be a problem for an application that uses exception behavior

for correctness, such as deliberately causing page faults on an address as a synchronization mech-

anism. Direct exception delivery within an enclave is an opportunity to improve performance and

security in future generations of SGX, as designed in Sanctum [61]. T-SGX [151] also shows

an example of delivering a page fault back to the enclave, if the page fault is triggered within a

transaction created by Intel’s Transaction Synchronization Extensions (TSX).

By handling exceptions inside the enclave, Graphene-SGX can emulate instructions that

are not supported by SGX, including CPUID and RDTSC. Use of these instructions will ultimately

trap to a handler inside the enclave, to call out to the OS for actual values, which are treated as

untrusted input and are checked. SGX also traps SYSCALL or INT $80 inside an enclave; thus,

Graphene-SGX redirects the system calls inside a static binary to libLinux.

6.3.3 Shielding Multi-Process Applications

Many Linux applications use multi-process abstractions, which are implemented using copy-on-

write fork and in-kernel IPC abstractions. In SGX, the host OS is untrusted, and enclaves can-

not share protected memory. Fortunately, Graphene implements multi-process support including

fork(), execve(), signals, and a subset of IPC mechanisms, using message passing instead of

shared memory. Thus, Graphene-SGX implements multi-process abstractions in enclaves without

major library OS changes. This subsection explains how Graphene-SGX protects multi-processing

abstractions from an untrusted OS.
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Figure 6.4: Process creation in Graphene-SGX. Numbers show the order of operations. When a process
forks, Graphene-SGX creates a new, clean enclave on the untrusted host. Then the two enclaves exchange
an encryption key, validates the CPU-generated attestation of each other, and migrates the parent process
snapshot.

Process creation in Graphene-SGX is illustrated in Figure 6.4. When a process in Graphene-

SGX forks into a new enclave, the parent and child will be running the same manifest and binaries,

and will have the same measurements. Similar to the process creation in Graphene, the parent and

child enclaves are connected with a pipe-like RPC stream, through the untrusted PAL. As part of

initialization, the parent and child will exchange a session key over the unsecured RPC stream,

using Diffie-Hellman. The parent and child use the CPU to generate attestation reports, which

include a 512-bit field in the report to store a hash of the session key and a unique enclave ID. The

parent and child exchange these reports to authenticate each other. Unlike remote attestation, local

attestation does not require use of Intel’s authentication service (IAS). Once the parent and child

have authenticated each other, the parent establishes a TLS connection over the RPC stream using

the session key. The parent can then send a snapshot of itself over the TLS-secured RPC stream,

and the snapshot is resumed in the child process, making it a clone of its parent. This strategy

prevents a man-in-the-middle attack between the parent and child.

Once a parent enclave forks a child, by default, the child is fully trusted. To create a less

trusted child, the parent would need to sanitize its snapshot, similar in spirit to the close-on-exec

flag for file handles. For example, a pre-forked Apache server may keep worker processes isolated

from the master to limit a potential compromise of a worker process. Graphene-SGX inherits a

limited API from Graphene, for applications to isolate themselves from untrusted child processes,
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but applications are responsible for purging confidential information before isolation.

Process Creation with New Executables. execve(), a system call which starts a process with

a specific executable, offers a different way from fork() to create processes. When a thread calls

execve() in Graphene-SGX, the library OS migrates the thread to a new process, with file han-

dles being inherited. Although the child does not inherit a snapshot from its parent, it can still

compromise the parent by exploiting potential vulnerabilities in handling RPC, which are not in-

ternally shielded. In other words, Graphene-SGX is not designed to share library OS-internal with

untrusted children. Thus, Graphene-SGX restricts execve() to only launch trusted executables,

which are specified in the manifest.

Inter-Process Communication. After process creation, parent and child processes will cooper-

ate through shared abstractions, such as signals or System V message queues, via RPC messages.

While messages are being exchanged between enclaves, they are encrypted, ensuring that these

abstraction are protected from the OS.

6.4 Summary

This chapter describes Graphene-SGX, a port of the Graphene library OS on the security-centered,

Intel SGX platforms. SGX facilitates the protection of applications against the whole untrusted

system stack ranging from off-chip hardware to the OS but imposes several restrictions on running

unmodified applications. Graphene-SGX removes the restrictions by servicing Linux system calls

inside an in-enclave library OS instance and defining an enclave interface with explicit checks for

responses from the untrusted OS. Compared with other thin, shielding layers [39, 152], Graphene-

SGX shields a large range of Linux system calls, without extending the host ABI that an enclave

needs to check.

Graphene-SGX shows the feasibility of protecting an unmodified application and library

OS on an untrusted OS, using three shielding techniques. First, Graphene-SGX shields the dy-

namic loading process by generating a unique cryptographic measurement that verifies all the bi-

naries of one application. Second, Graphene-SGX further defines a simple enclave interface below
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the PAL ABI to shield an enclave from a series of subtle semantic attacks launched by the untrusted

OS, known as Iago attacks [55]. For most of the enclave calls that reach out to the untrusted OS,

Graphene-SGX either restricts the possible responses from the OS to one predictable answer or

ensures that deliberate failures of the OS are benign to the application. Finally, Graphene-SGX

spans a multi-process application into multiple mutually-trusting, cooperative enclaves. To shield

the inter-enclave collaboration from the untrusted OS, Graphene-SGX establishes mutual trust be-

tween the enclaves using local attestation of Intel CPUs and negotiates TLS-secured, inter-enclave

RPC streams for message passing.
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Chapter 7

Performance Evaluation

This chapter evaluates the performance of Graphene. The evaluation includes the following four as-

pects: (1) translation, isolation, and shielding costs of the host ABI and startup time; (2) emulation

overheads of the library OS on system call latency and throughput; (3) end-to-end performance of

sample applications; (4) resource costs, including both memory footprint and CPU occupancy. The

evaluation compares the performance on Linux and SGX, two host OS examples where Graphene

has been fully ported. Thus, this chapter exemplifies the potential cost of leveraging a library OS

for compatibility and security isolation.

Experimental Setup. The evaluation is based on Graphene v0.41. All experiment results are

collected on a Dell Optiplex 790 Small-Form Desktop, with a 4-core 3.2GHz Intel Core i5-6500

CPU without hyper-threading two 4GB DIMM 1600MHz DDR3 RAMs (8GB in total), and a Sea-

gate 512GB, 7200 RPM SATA disk formatted as EXT4. SGX is enabled on the CPU with 93.5MB

EPC (enclave page cache). To prevent fluctuation in experiment results, Turbo Boost, SpeedStep,

and CPU idle states are disabled for all experiments. All networked servers are evaluated over

1Gbps Ethernet cards connected to a dedicated local network, except that some micro-benchmarks

are evaluated over a local loopback device (i.e., localhost).

The host OS is Ubuntu 16.04.4 LTS Server with Linux kernel 4.10, which is also the base-

line for comparison. All test programs and applications are dynamically linked with a modified

glibc 2.19. Graphene-SGX uses the Intel SGX Linux SDK [91] and driver [90] v1.9.

1Graphene is released at https://github.com/oscarlab/graphene
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7.1 The PAL ABI Performance

The section evaluates the performance of the PAL ABI, by benchmarking either the latency or

throughput of PAL calls. As the implementation of PAL calls largely depends on the underlying

host system interfaces, the PAL ABI is likely to share the same performance patterns as the host

OSes, with various amount of overheads. A logical source of these overheads is the translation

between PAL calls and a host system interface, given the gap between the semantics of the two

interfaces. Other overheads include the costs of enclave exits or VM exits and indirect perfor-

mance impacts caused by switching contexts between the host OSes and the library OS instances.

For SGX, the latency of entering and exiting enclave can be up to ∼7,000 cycles, and enclave

exits also cause TLB flushes and last-level cache pollution, which both downgrade enclave per-

formance [130]. Enclave executions also suffer memory overheads for swapping memory into the

EPC (enclave page cache) or decrypting memory at last-level cache misses.

Security checks also impact the PAL ABI performance in several cases. For most hosts,

Graphene isolates mutually-untrusting applications from attacking each other or the host OS, by

restricting the attack surface which consists of shared host abstractions and system interfaces. For

SGX, Graphene further assumes a stronger threat model, which distrusts any OSes, hypervisors

and off-chip hardware. Security checks for SGX require detecting potentially-malicious inputs

from an untrusted OS, including using cryptographic techniques to encrypt or authenticate data.

This chapter shows that security checks on a stronger threat model like SGX tends to impose high

overheads on many PAL calls.

The experiments in this section are based on a ported version of LMbench 2.5 [125] using

the PAL ABI. For each PAL call, the evaluation compares the performance, either as latency or

throughput, among the PALs for Linux and SGX hosts and a native Linux kernel, to measure the

overheads of PALs. For each host target, the evaluation tests both with and without security checks

or enforcements, such as seccomp filter and reference monitor on Linux host, or checking untrusted

inputs in an enclave. This section also includes a detailed analysis of performance overheads

impacted by design decisions in PAL implementation.
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(a) Linux vs. Linux PAL (b) Linux vs. Linux PAL vs. SGX PAL

Figure 7.1: Latency of StreamOpen() on the Linux PAL and SGX PAL, versus open() on Linux. Lower
is better. Figure (a) compares StreamOpen() on the Linux PAL, with and without a seccomp filter (+SC)
and reference monitor (+RM), against open() on Linux. Figure (b) compares StreamOpen() on a SGX
PAL, with and without integrity checks (+CHK), against the Linux PAL and open() on Linux.

7.1.1 Stream I/O

This section evaluates the performance of file operations, network sockets, and RPC streams. To be

accurate, the evaluation separates the benchmarking strategies for different types of I/O streams.

For file operations, the evaluation measures the performance of opening, reading, and writing a

regular host file through PAL calls or native host system calls. For network sockets or RPC streams,

the evaluation measures both latency and bandwidth of transferring data over the I/O streams.

Opening a File. File system operations such as opening a file are often subject to slowdowns

caused by security checks and system interface translation. As shown in Figure 7.1(a), host system

call translation, system call restriction (using the seccomp filter), and reference monitoring each

contribute a nontrivial portion to the file opening overheads, adding up to 21–31%. Figure 7.1(a)

also shows a correlation between file opening latency and path lengths, since both searching file

records and checking against reference policies requires path comparison.

File integrity protection induces orders-of-magnitude higher overheads than the translation

costs. For reference, exiting an enclave and copying memory for opening a file in the host OS take

a fixed overhead at ∼5 µs. The cost of integrity protection includes calculating a secure hash of

the file (by SHA-256 in the current implementation) and generating a Merkle tree of hash values

for verifying consequential reads and writes. As shown in Figure 7.1 (b), the cost is correlated
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(a) Sequential read (b) Sequential write

Figure 7.2: Latency of sequential StreamRead() and StreamWrite() on the Linux PAL, versus read()
and write() on Linux. Lower is better. Figure (a) and (b) respectively compares StreamRead() and
StreamWrite() on the Linux PAL, with and without a seccomp filter (+SC) and reference monitor (+RM),
against read() and write() on Linux.

(a) Sequential read (b) Sequential write

Figure 7.3: Latency of sequential StreamRead() and StreamWrite() on the SGX PAL, versus the
Linux PAL and Linux. Lower is better. Figure (a) and (b) respectively compares StreamRead() and
StreamWrite() on the SGX PAL, with and without integrity checks (+CHK) and reference monitor
(+RM), against the Linux PAL and read() and write() on Linux. The current design does not support
integrity checks for StreamWrite().

with file size, as ∼470µs for a 64KB file or ∼30 ms for a 4MB file, even with the Intel hardware

acceleration. Although different cryptographic algorithms or implementations may improve the

performance, it appears to be difficult to obtain significant overhead reduction. A possible opti-

mization is to offload the generation of Merkle trees to the signing phase so that the PAL can avoid

verifying the whole file at file opening.

File Reads and Writes. File reads and writes show very different performance patterns between

a Linux host and an SGX enclave. With a trusted host OS, the PAL calls for reading and writing

a file have similar latency as the underlying read() and write() system calls (see Figure 7.2).
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The impact of seccomp filter and reference monitoring on reads and writes are nearly negligible,

especially since the reference monitor does not check each read and write operations.

If the host OS is untrusted and the guest runs inside an enclave, reading a file suffers

significant overheads due to: (1) copying file contents between enclaves and the untrusted hosts;

(2) cryptographic operations for checking the integrity of file contents. As shown in Figure 7.3,

the cost of enclave exits and memory copy is fixed at 8–12 µs for reads and 8–50 µs for writes, but

the cryptographic checks can be much more expensive depending on the size of reads and writes.

The current SGX PAL assumes file contents to be checked in 16KB chunks, so any file reads

smaller than 16KB are as expensive as reading an aligned 16KB chunk. Reducing the checking

size will improve the latency of small reads, but increases the memory overhead for storing the

whole Merkle tree. The current SGX PAL does not protect the integrity or confidentiality of file

writes, so the evaluation only tests file writes without cryptographic checks.

Network and RPC Streams. On the Linux PAL, overheads on network and RPC streams are

either minor or negligible, because most operations require no security checks. The observation is

backed by Figure 7.4 (a) and Figure 7.5 (a), which shows the highest overheads on a TCP socket,

a UDP socket, and a RPC stream, as measuring the latency of sending a single-byte message, are

∼18%, ∼30%, and nearly 0%, respectively, compared to the underlying host abstractions. The

overheads are likely to be less significant with larger workloads since the translation between the

PAL ABI and host system calls tends to be a fixed cost. As shown in Figure 7.4 (b) and Figure 7.5

(b), the bandwidth for sending large messages over a TCP socket and an RPC stream suffer less

than 5% overheads on the Linux PAL.

For SGX, reading or writing on a network or RPC stream suffers similar overheads as file

reads and writes, due to the same requirement of enclave exits and memory copies. For TCP, UDP,

and RPC streams, the benchmark results show overheads up to 167%, for simply exiting enclaves

and invoking host Linux system calls. To improve the performance, one can adopt an exit-less,

asynchronous enclave interface similar to the designs in SCONE [39] and Eleos [130]. Graphene

leaves the exploration of these techniques as future work.

Note that the current SGX PAL design does not protect the integrity or confidentiality of

messages sent or received over TCP or UDP sockets. Previous work [39] makes the similar con-
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(a) Latency (µs) (b) Bandwidth (MB/s)

Figure 7.4: (a) Latency of sending a short message over TCP and UDP sockets (lower is better), and (b)
bandwidth of sending large data over TCP (higher is better). The comparison is between (1) recv() and
send() on Linux; (2) StreamRead() and StreamWrite() on a Linux PAL, with and without a seccomp
filter (+SC) and reference monitor (+RM); (3) the same PAL calls on the SGX PAL, without data protection.

(a) Latency (µs) (b) Bandwidth (MB/s)

Figure 7.5: (a) Latency of sending a short message over RPC (lower is better), and (b) bandwidth of send-
ing large data (higher is better). The comparison is between (1) read() and write() over a pipe or an
AF UNIX socket on Linux; (2) StreamRead() and StreamWrite() on the Linux PAL, with and without
a seccomp filter (+SC) and reference monitor (+RM); (3) the same PAL calls on the SGX PAL, both with
and without AES-GCM protection (+AESGCM).

clusion, based on the observation that SSL/TLS encryption and authentication inside applications

are quite prevalent and much more efficient than enforcement at enclave exits.

For RPC streams, the SGX PAL must protect the integrity and confidentiality of messages

since applications are not aware of security threats from the untrusted OS. The SGX PAL es-

tablishes a TLS connection on every RPC streams, bootstrapped by the local attestation of SGX

hardware. As a result, the performance of RPC streams on the SGX PAL is bound by the perfor-

mance of cryptographic algorithm used by the TLS connections, which is AES-GCM in the current

implementation. Figure 7.5 shows that, even with the Intel hardware acceleration (i.e., AES-NI),

the overheads on PRC streams are still quite significant; the cryptographic operations have only a
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(a) allocation + deallocation (b) allocation + memory access + deallocation

Figure 7.6: Latency of (a) allocating and deallocating a range of virtual pages, and (b) the same operations
with writing to each page after allocation. Lower is better. The comparison is between (1) mmap() and
munmap() on Linux; (2) VirtMemAlloc() and VirtMemFree() on the Linux PAL, with and without a
seccomp filter (+SC) and reference monitor (+RM); (3) the same PAL calls on the SGX PAL, with and
without zeroing the pages before use (+Zero).

small impact on single-byte messages (∼10%), but the bandwidth downgrades from ∼5.5 GB/s to

∼216 MB/s when sending 64KB messages.

7.1.2 Page Management

Single-process abstractions, such as page management, tend to have lower overheads by avoiding

complicated security checks. In Figure 7.6, the overheads of memory allocation and deallocation

using VirtMemAlloc() and VirtMemFree() over the native mmap() and munmap() are almost

negligible (less than 5%), even if the guest has accessed the allocated pages. Graphene expects the

same performance on any host OS with dynamic page management.

The current SGX PAL follows a static page management model, due to the restriction of

SGX hardware. For each enclave, the SGX PAL preallocates a heap space at loading time, and

cannot update the enclave page layout after the enclave starts. Although the untrusted OS still

offers page-in and page-out when an enclave requires more pages than the EPC size (93.5MB in

the current setup), the SGX PAL implements internal page management to bypass the untrusted

OS. The latency of allocating virtual pages, however, is dominated by the cost of zeroing pages

before returning to the guest. Due to the memory access overheads in enclaves, zeroing pages that

are larger than the last-level cache size (4MB on an Intel i5-6500 CPU) can be as expensive as 600-
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(a) thread creation (b) polling N TCP sockets

Figure 7.7: (a) Thread creation latency and (b) latency of polling a number of TCP sockets. Lower is
better. The comparison is between (1) clone() and select() on Linux; (2) ThreadCreate() and
ObjectsWaitAny() on the Linux PAL, with and without a seccomp filter (+SC) and reference monitor
(+RM); (3) the same PAL calls on the SGX PAL.

75,000× to original mmap() and munmap() latency. The SGX version 2 hardware can potentially

improve the overheads by dynamically removing and adding pages to an enclave. Without the

memory zeroing cost, page allocation and deallocation on the SGX PAL is only∼16% slower than

mmap() and munmap(), since the SGX PAL for simply updating the mappings inside an enclave.

7.1.3 Scheduling

This section evaluates the performance of thread creation, polling multiple TCP sockets, and syn-

chronization primitives, such as notification events and mutexes.

Thread Creation. Also classified as a single-process operation, thread creation on Linux PAL

expects little impact from security checks or enforcements. The implementation effort for pro-

cess creation mostly focuses on keeping the semantics of the PAL call—ThreadCreate()—as

simple as possible. For instance, a new thread created by ThreadCreate() always starts on a

pre-allocated stack which the guest needs not to assign. As shown in Figure 7.7 (a), the overhead

on the Linux PAL to create and terminate a thread is ∼46%, most of which results from stack

allocation. The overheads of seccomp filter and reference monitor are negligible (less than 5%).

The latency on the SGX PAL is slightly more expensive, mostly due to populating an unused TCS

(thread control structure) inside the enclave. Thread creation on SGX does not accept any inputs

from the untrusted OS, and thus requires no security checks against potential Iago attacks.
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(a) signal an event (b) competing a mutex among N threads

Figure 7.8: Latency of (a) signaling an event and (b) competing a mutex among N threads (N: 1 to 8). Lower
is better. The comparison is between (1) pthread condition variables and mutexes on Linux; (2) Notification
events and mutexes on the Linux PAL, with and without a seccomp filter (+SC) and reference monitor
(+RM); (3) the same abstractions on the SGX PAL.

Polling TCP Sockets. Polling TCP sockets or any stream handles is one of the operations that

suffers more translation costs. Mapping file, TCP, UDP, or RPC handles to host file descriptors

requires reading the contents of handles, and thus causes overheads proportional to numbers of

handles. Figure 7.7 (b) compares the latency of ObjectsWaitAny() on 64 to 512 TCP sockets

with select(), and shows that the overhead of system interface translation is 24–60% on the

Linux PAL. For the SGX PAL, polling the same amount of TCP sockets requires more time for

enclave exits and copying a bitmap of file descriptors out of the enclave. The overhead on the SGX

PAL is 13–80% compared to select().

Events and Mutexes. The Linux PAL and SGX PAL implement notification events, synchro-

nization events, and mutexes with atomic or compare-and-exchange instructions, but use futexes

in the host OS to free the CPUs when blocking on other threads. The implementation is similar to

pthread primitives such as pthread cond and pthread mutex; therefore, similar performance is

expected on these primitives, with less than 10% overhead on the Linux PAL. (see Figure 7.8). For

the SGX PAL, these primitives are much more expensive (∼130–250%) if the PAL calls require

exiting encla